Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The assembly of protein strands into fibrils

12.04.2010
The Atomic Force Microscope depicts on its screen the few nanometer thick and few micrometer long fibers as white flexible sticks, crisscrossing the surface on which they are deposited. The very peculiar property of these proteins lies in fact that they can self assemble into complex ribbon-like twisted fibers.

Researchers at ETH Zürich, EPF Lausanne and University of Fribourg have teamed up to take Atomic Force Microscopy images of the fibers and to analyze them using concepts from polymer physics and theoretical modeling.

This combination of expertise has lead them to propose a set of general rules governing the assembly of filaments into thicker and twisted ribbon like fibers. Their results are published in the current issue of the scientific journal "Nature Nanotechnology".

"The model that we propose is extremely precise in its predictions", says Raffaele Mezzenga, Professor of Food and Soft Materials Sciences at the ETH Zürich. "Up to now there was no such exact and general model for the formation of Amyloid fibers", continues Giovanni Dietler, Professor of Physics of Living Matter, at the EPF Lausanne.

The structure of the Amyloid fibers as it was unveiled by the experiments, surprised the researchers. Single proteins build the long filaments and subsequently the filaments assemble side by side to form the ribbon-like twisted fibers.

Mezzenga explains that the ribbon-like structure is the logic consequence of the strong charge carried by the building blocks of the fibers. In fact, the single proteins feel a strong mutual repulsion preventing them to pack and the ribbon structure is the only one that permits to limit this repulsion. Presently one missing information in the present model, is the exact nature of the short range attraction between the building blocks that drives in the first place the assembly among the protein filaments. Scientists agree that along the filaments there are charge-less domains of hydrophobic character (water repellant) that are the source of the short-range attraction. So there is a balance between attractive and repulsive interactions and the results is the ribbon like twisted conformation.

Self-organizing proteins are common in living matter and they are found in large aggregates for example in blood coagulation. Spherical like proteins are used in food industry as emulsifiers, gelling and foaming agents and in vitro they form Amyloid like structures. These latter fibers have properties (elasticity, solubility, etc) favorable for food texturing or to produce special structures. The milk protein beta-lactoglubulin studied by Mezzenga and his colleagues is at the beginning spherical and by a heat treatment accompanied by acid environment it aggregates into the filamentous structures. Beta-lactoglobulin is an important component of the milk serum and therefore very relevant for food industry.

The knowledge gained by the scientists on this food protein can potentially benefit medical sciences. In fact Amyloid-like fibers appear in humans affected by neurodegenerative diseases, like Alzheimer- or Creutzfeldt-Jakob disease. These human fibers, although made out of a very different proteins, are also ribbon-like and twisted and their assembly into long aggregates is presently under intense scrutiny. The model proposed by the team could also help to understand the genesis and development of theses diseases.

Giovanni Dietler | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

For a chimpanzee, one good turn deserves another

27.06.2017 | Life Sciences

Collapse of the European ice sheet caused chaos

27.06.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>