Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The assembly of protein strands into fibrils

12.04.2010
The Atomic Force Microscope depicts on its screen the few nanometer thick and few micrometer long fibers as white flexible sticks, crisscrossing the surface on which they are deposited. The very peculiar property of these proteins lies in fact that they can self assemble into complex ribbon-like twisted fibers.

Researchers at ETH Zürich, EPF Lausanne and University of Fribourg have teamed up to take Atomic Force Microscopy images of the fibers and to analyze them using concepts from polymer physics and theoretical modeling.

This combination of expertise has lead them to propose a set of general rules governing the assembly of filaments into thicker and twisted ribbon like fibers. Their results are published in the current issue of the scientific journal "Nature Nanotechnology".

"The model that we propose is extremely precise in its predictions", says Raffaele Mezzenga, Professor of Food and Soft Materials Sciences at the ETH Zürich. "Up to now there was no such exact and general model for the formation of Amyloid fibers", continues Giovanni Dietler, Professor of Physics of Living Matter, at the EPF Lausanne.

The structure of the Amyloid fibers as it was unveiled by the experiments, surprised the researchers. Single proteins build the long filaments and subsequently the filaments assemble side by side to form the ribbon-like twisted fibers.

Mezzenga explains that the ribbon-like structure is the logic consequence of the strong charge carried by the building blocks of the fibers. In fact, the single proteins feel a strong mutual repulsion preventing them to pack and the ribbon structure is the only one that permits to limit this repulsion. Presently one missing information in the present model, is the exact nature of the short range attraction between the building blocks that drives in the first place the assembly among the protein filaments. Scientists agree that along the filaments there are charge-less domains of hydrophobic character (water repellant) that are the source of the short-range attraction. So there is a balance between attractive and repulsive interactions and the results is the ribbon like twisted conformation.

Self-organizing proteins are common in living matter and they are found in large aggregates for example in blood coagulation. Spherical like proteins are used in food industry as emulsifiers, gelling and foaming agents and in vitro they form Amyloid like structures. These latter fibers have properties (elasticity, solubility, etc) favorable for food texturing or to produce special structures. The milk protein beta-lactoglubulin studied by Mezzenga and his colleagues is at the beginning spherical and by a heat treatment accompanied by acid environment it aggregates into the filamentous structures. Beta-lactoglobulin is an important component of the milk serum and therefore very relevant for food industry.

The knowledge gained by the scientists on this food protein can potentially benefit medical sciences. In fact Amyloid-like fibers appear in humans affected by neurodegenerative diseases, like Alzheimer- or Creutzfeldt-Jakob disease. These human fibers, although made out of a very different proteins, are also ribbon-like and twisted and their assembly into long aggregates is presently under intense scrutiny. The model proposed by the team could also help to understand the genesis and development of theses diseases.

Giovanni Dietler | EurekAlert!
Further information:
http://www.epfl.ch

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>