Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Assembly of a Protein Degradation Machine Could Lead to Treatments in Cancer, Neurological Diseases

07.05.2013
Kansas State University scientists helped discover new details about an intricate process in cells. Their finding may advance treatments for cancer and neurological diseases.

Kansas State University researchers Jeroen Roelofs, assistant professor, and Chingakham Ranjit Singh, research assistant professor -- both in the Division of Biology -- led part of the study. Both also are research affiliates with the university's Johnson Cancer Research Center.


A computer model of the regulatory particle and core particle docking process that is controlled by chaperones.

They worked with colleagues at Harvard Medical School, the University of California-San Francisco and the University of Kansas. The scientific journal Nature recently published the team's observations, titled "Reconfiguration of the proteasome during chaperone-mediated assembly."

The research focused on proteasomes, protein complexes inside the cells of humans and other organisms that help keep the cells healthy.

"The proteasome is a large, molecular machine in the cell that degrades other proteins," Roelofs said. "It's important for protein quality control as well as for the cell's ability quickly remove specific proteins, thereby ensuring the cell's health and proper function."

The goal was to better understand how the various particles inside proteasomes work together to make the proteasomes function -- think the gears and components needed, and in what order, to build a working machine. Scientists believe that disruption of two key particles -- and consequently a proteasome's ability to work correctly -- has implications for cancers as well as various neurological degenerative diseases, such as Parkinson's and Huntington's diseases.

The Nature study built on research that Roelofs made as a postdoctoral research fellow at Harvard Medical School in 2009. He found that proteins called chaperones play a key role in the assembly process of two particles that when connected, gives proteasomes the ability to scrub unwanted proteins from cells. Chaperones act as a foreman for the two particles.

One of the findings in the new study is that in addition to acting as a molecular foreman for the two particles, chaperones also control when those two particles come together. Similarly, the scientists found more about the two particles.

The core particle has seven pockets while the regulatory particle has six tails that tuck into those pockets. When docked together, they turn on the proteasome's functionality.

"In the assembly process there is only one tail that actually determines how the core particle and regulatory particle bind together," Roelofs said. "That's surprising because there are six tails, but only one is needed to give specificity, and the docking into the pocket is controlled by the chaperone."

Roelofs believes that the findings may reveal new targets for anticancer drugs, as a chaperone in the human genes is involved in liver cancer. The proteasome inhibitor Bortezomib is used in the treatment of current cancers. Additionally, the information may advance cancer and neurological research by giving scientists new pathways to study and manipulate.

"This is pretty basic research," Roelofs said. "Understanding the basic mechanics can often lead to new pathways for improvement, which is essential when it comes to human health."

Scientists made the findings through a combination of techniques, including Cryo-electron microscopy, X-ray crystallography, yeast genetics, biochemical reconstitution assays and proteasome activity measurements. These techniques helped researchers observe the submicroscopic tails and complex tail-to-pocket binding process, as well as study the role of the chaperones in the core and regulatory particle process.

The study was largely funded by the Centers of Biomedical Research Excellence Protein Structure and Function, or COBRE-psf, support center at the University of Kansas -- a multidisciplinary, biomedical research program funded by the National Institute of Health; the Johnson Cancer Research Center at Kansas State University; and the Kansas IDeA Network of Biomedical Research Excellence, or K-INBRE.

Jeroen Roelofs, 785-532-3969, jroelofs@k-state.edu

Jeroen Roelofs | Newswise
Further information:
http://www.k-state.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>