Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Assembling the transcriptome of a noxious weed: New resources for studying how plants invade

Scientists from Oregon State University and Portland State University develop the transcriptome and other genetic resources of an invasive plant, Brachypodium sylvaticum, for extensive research on plant adaptation

In order to build and maintain cells, DNA is copied into ribonucleic acid (RNA) molecules, also called transcripts. Transcripts are often like a recipe for making proteins, and a collection of all the transcripts in a cell is called a transcriptome.

Pankaj Jaiswal, Assistant Professor of Botany and Plant Pathology at Oregon State University, Samuel Fox, a Postdoctoral Associate in Jaiswal's laboratory, and colleagues assembled transcriptomes of a noxious weed, Brachypodium sylvaticum, or slender false brome. The transcriptome provides an extensive genetic tool for studying how invasive species, like slender false brome, successfully spread into novel ranges. In addition, the genome is available for a closely related species, Brachypodium distachyon. Together, the transcriptome and genome can be used as a reference for pinpointing differences in slender false brome genes and gene activity that may contribute to its invasive capabilities.

Slender false brome is an invasive grass that is native to Europe, Asia, and North Africa. It was introduced into the United States about 100 years ago and is listed as a noxious weed along the West Coast of the United States. "It is aggressively invasive within its current range—near monocultures of this grass occupy thousands of hectares of mixed coniferous understory and grassland habitats in Oregon," says Mitch Cruzan, coauthor and Associate Professor of Biology at Portland State University.

Slender false brome is ideal as a model for invasive plant evolution. "False brome is in the process of active range expansion and is wildly successful despite experiencing colder, wet winters and drier summers than plants in the native range," explains Cruzan, "so it is a great system for studying ecological and evolutionary aspects of invasion."

Fox and colleagues have assembled the transcriptomes for two slender false brome populations from its native range (Greece, Spain) and one population from its invasive range (Oregon). Comparing transcriptomes across ranges will reveal new changes in gene expression in the highly successful invasive population. "This system has great potential as a comparative framework for studying adaptation to new environments and invasion," comments Jaiswal.

To allow future studies to identify the functions of slender false brome genes, the authors also compared the false brome transcriptome to those of well-studied agricultural species, including rice and sorghum. If false brome possesses a gene that has already been studied in an agricultural species, it will be easier to identify the gene's supposed function. The teams from Jaiswal's and Cruzan's laboratories are exploring these newly developed genetic resources, which may provide insights into how slender false brome has adapted to Oregon's different environmental conditions.

The authors published their results, including details on data retrieval, in the March issue of Applications in Plant Sciences (available for free viewing at Fox and Cruzan note, "The seed and genomic resources are publicly available, so it would be relatively easy for any research group to establish a research program focused on slender false brome."

Applications in Plant Sciences (APPS) is a monthly, online-only, peer-reviewed, open access journal focusing on new tools, technologies, and protocols in all areas of the plant sciences. It is published by the Botanical Society of America (, a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. The first issue of APPS published in January 2013; APPS is available as part of BioOne's Open Access collection (

For further information, please contact the APPS staff at

Beth Parada | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Atom-Sized Craters Make a Catalyst Much More Active
30.11.2015 | SLAC National Accelerator Laboratory

nachricht Hydra Can Modify Its Genetic Program
30.11.2015 | Université de Genève (University of Geneva)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How do Landslides control the weathering of rocks?

Chemical weathering in mountains depends on the process of erosion.

Chemical weathering of rocks over geological time scales is an important control on the stability of the climate. This weathering is, in turn, highly dependent...

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

All Focus news of the innovation-report >>>



Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Latest News

Making backup plans can be a self-fulfilling prophecy

01.12.2015 | Social Sciences

How do Landslides control the weathering of rocks?

01.12.2015 | Earth Sciences

Teamplay IT solution enables more efficient use of protocols

30.11.2015 | Trade Fair News

More VideoLinks >>>