Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Assembling the transcriptome of a noxious weed: New resources for studying how plants invade

06.03.2013
Scientists from Oregon State University and Portland State University develop the transcriptome and other genetic resources of an invasive plant, Brachypodium sylvaticum, for extensive research on plant adaptation

In order to build and maintain cells, DNA is copied into ribonucleic acid (RNA) molecules, also called transcripts. Transcripts are often like a recipe for making proteins, and a collection of all the transcripts in a cell is called a transcriptome.

Pankaj Jaiswal, Assistant Professor of Botany and Plant Pathology at Oregon State University, Samuel Fox, a Postdoctoral Associate in Jaiswal's laboratory, and colleagues assembled transcriptomes of a noxious weed, Brachypodium sylvaticum, or slender false brome. The transcriptome provides an extensive genetic tool for studying how invasive species, like slender false brome, successfully spread into novel ranges. In addition, the genome is available for a closely related species, Brachypodium distachyon. Together, the transcriptome and genome can be used as a reference for pinpointing differences in slender false brome genes and gene activity that may contribute to its invasive capabilities.

Slender false brome is an invasive grass that is native to Europe, Asia, and North Africa. It was introduced into the United States about 100 years ago and is listed as a noxious weed along the West Coast of the United States. "It is aggressively invasive within its current range—near monocultures of this grass occupy thousands of hectares of mixed coniferous understory and grassland habitats in Oregon," says Mitch Cruzan, coauthor and Associate Professor of Biology at Portland State University.

Slender false brome is ideal as a model for invasive plant evolution. "False brome is in the process of active range expansion and is wildly successful despite experiencing colder, wet winters and drier summers than plants in the native range," explains Cruzan, "so it is a great system for studying ecological and evolutionary aspects of invasion."

Fox and colleagues have assembled the transcriptomes for two slender false brome populations from its native range (Greece, Spain) and one population from its invasive range (Oregon). Comparing transcriptomes across ranges will reveal new changes in gene expression in the highly successful invasive population. "This system has great potential as a comparative framework for studying adaptation to new environments and invasion," comments Jaiswal.

To allow future studies to identify the functions of slender false brome genes, the authors also compared the false brome transcriptome to those of well-studied agricultural species, including rice and sorghum. If false brome possesses a gene that has already been studied in an agricultural species, it will be easier to identify the gene's supposed function. The teams from Jaiswal's and Cruzan's laboratories are exploring these newly developed genetic resources, which may provide insights into how slender false brome has adapted to Oregon's different environmental conditions.

The authors published their results, including details on data retrieval, in the March issue of Applications in Plant Sciences (available for free viewing at http://www.bioone.org/doi/pdf/10.3732/apps.1200011). Fox and Cruzan note, "The seed and genomic resources are publicly available, so it would be relatively easy for any research group to establish a research program focused on slender false brome."

Applications in Plant Sciences (APPS) is a monthly, online-only, peer-reviewed, open access journal focusing on new tools, technologies, and protocols in all areas of the plant sciences. It is published by the Botanical Society of America (http://www.botany.org), a non-profit membership society with a mission to promote botany, the field of basic science dealing with the study and inquiry into the form, function, development, diversity, reproduction, evolution, and uses of plants and their interactions within the biosphere. The first issue of APPS published in January 2013; APPS is available as part of BioOne's Open Access collection (http://www.bioone.org/loi/apps).

For further information, please contact the APPS staff at apps@botany.org.

Beth Parada | EurekAlert!
Further information:
http://www.botany.org

More articles from Life Sciences:

nachricht How to become a T follicular helper cell
31.07.2015 | La Jolla Institute for Allergy and Immunology

nachricht Heating and cooling with light leads to ultrafast DNA diagnostics
31.07.2015 | University of California - Berkeley

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>