Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-assembling Nano-fiber Gel Delivers High Concentrations of Clinically Approved Drugs

23.10.2008
Scientists have developed a new self-assembling hydrogel drug delivery system that is biocompatible, efficient at drug release, and easy to tailor. Importantly, these structures can deliver clinically approved drugs in high concentrations without requiring carriers for the drug or generating toxic components, a problem with hydrogel systems until now.

Two teams of scientists from Harvard-MIT Division of Health Science and Technology at Brigham and Women’s Hospital have developed a new self-assembling hydrogel drug delivery system that is biocompatible, efficient at drug release, and easy to tailor.

Importantly, these structures can deliver clinically approved drugs in high concentrations without requiring carriers for the drug or generating toxic components, a problem with hydrogel systems until now.

The findings, which are now available on Science Direct, will be published in the Nov. 25 issue of Biomaterials.

“This strategy could serve as the platform technology for developing drug-based delivery carriers that can release drugs such as anti-inflammatory agents on demand in response to inflammation, for example,” says Jeffery Karp, MD, instructor of medicine at the HST Center for Biomedical Engineering at the Brigham and Women’s Hospital and a co-corresponding author on this manuscript.

“Converting known, clinically-practicing drugs into amphiphilic molecules which can undergo self-assembly is the key development in our present research; this may eliminate the need for an external carrier for delivering drugs,” says Praveen Kumar Vemula, PhD, research fellow in medicine at Brigham and Women’s Hospital.

“Enzyme triggered gel degradation has been our key strength, which played a major role in developing these delivery vehicles from drugs-based hydrogels,” says another leading investigator Dr. George John who is associate professor at City College of New York. Gregory Cruikshank, another author of the article is at present working in Albert Einstein College of Medicine of Yeshiva University.

This work was supported (in part) by a grant from the City University of New York PSC-CUNY research award program. Brenntag North American provided enzyme samples.

The Harvard-MIT Division of Health Sciences and Technology (HST) brings together the Massachusetts Institute of Technology (MIT), Harvard Medical School (HMS), Harvard University, the Boston area teaching hospitals and an assortment of research centers in a unique collaboration that integrates science, medicine and engineering to solve problems in human health.

Laurie Pass | Newswise Science News
Further information:
http://www.mit.edu

Further reports about: Gel Hydrogel Nano-fiber Nano-fiber Gel deliver delivery drugs enzyme samples hydrogel systems

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>