Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Self-Assembling Devices

14.06.2010
Design and synthesis of organic devices

Organic devices have greatly benefited from the remarkable advances in synthetic organic chemistry that have allowed for the synthesis of a wide variety of ð-conjugated molecules with attractive electronic functions.

In Chemistry—An Asian Journal, Wei-Shi Li, Takanori Fukushima, Takuzo Aida, and co-workers, based at the Shanghai Institute of Organic Chemistry (China), Riken (Saitama, Japan), and the Japan Science and Technology Agency (Tokyo) describe the rational design strategy using side-chain incompatibility of a covalently connected donor–acceptor (D–A) dyad to synthesize organic p/n heterojunctions with molecular-level precision.

Although organic devices can be easily designed, without proper molecular design that allows for long-range ordering of ð-conjugated molecules, the resulting devices will rarely show the expected performances. Thin-film organic photovoltaic devices require electron-donor (D) and -acceptor (A) molecules to assemble homotropically to form a heterojunction. Additionally, to achieve a highly efficient photoinduced charge separation, the resultant p- and n-type semiconducting domains must be connected over a long distance. However, D and A components tend to assemble together by means of a charge-transfer (CT) interaction, unfavorable for photoelectric conversion.

Oligothiophene (OT) and perylenediimide (PDI) have been synthesized to form covalently linked D–A dyads, which bear at their termini either incompatible or compatible side chains. The dyads with the incompatible side chains intrinsically self-assemble into nanofibrous structures, whilst the dyad containing the compatible side chains resulted in ill-defined microfibers. Flash-photolysis time-resolved microwave conductivity measurements, in conjunction with transient absorption spectroscopy, clearly shows that the assembly with the incompatible side chains exhibits a much greater photoconducting output than that with compatible side chains.

This design strategy with "side-chain incompatibility" provides promise for the realization of p/n heterojunctions from covalently connected D–A dyads. Furthermore, this design strategy can give rise to long-range structural integrity that is essential for excellent device performances. Aida writes "elaboration of side-chain-incompatible D–A dyads in terms of absorption range and carrier transport properties is a subject worthy of further investigations for developing molecularly engineered photovoltaic devices."

Author: Takuzo Aida, National Museum of Emerging Science and Innovation, Tokyo (Japan), http://macro.chem.t.u-tokyo.ac.jp/

Title: Use of Side-Chain Incompatibility for Tailoring Long-Range p/n Heterojunctions: Photoconductive Nanofibers Formed by Self-Assembly of an Amphiphilic Donor-Acceptor Dyad Consisting of Oligothiophene and Perylenediimide

Chemistry - An Asian Journal, Permalink to the article: http://dx.doi.org/10.1002/asia.201000111

Takuzo Aida | Wiley-VCH
Further information:
http://macro.chem.t.u-tokyo.ac.jp/
http://www.chemasianj.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>