Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Assembling cells into artificial 3-D microtissues, including a tiny gland

06.03.2009
Hybridized DNA is glue that sticks these cells together to resemble real tissue

As synthetic biologists cram more and more genes into microbes to make genetically engineered organisms produce ever more complex drugs and chemicals, two University of California chemists have gone a step further.

They have assembled different types of genetically engineered cells into synthetic microtissues that can perform functions such as secreting and responding to hormones, promising more complex biological capabilities than a single cell alone could produce.

"This is like another level of hierarchical complexity for synthetic biology," said coauthor Carolyn Bertozzi, UC Berkeley professor of chemistry and of molecular and cell biology and director of the Molecular Foundry at Lawrence Berkeley National Laboratory. "People used to think of the cell as the fundamental unit. But the truth is that there are collections of cells that can do things that no individual cell could ever be programmed to do. We are trying to achieve the properties of organs now, though not yet organisms."

While the synthetic tissues today comprise only a handful of cells, they could eventually be scaled up to make artificial organs that could help scientists understand the interactions among cells in the body and might some day substitute for human organs.

"We are really taking this into the third dimension now, which for me is particularly exciting," said first author Zev J. Gartner, a former UC Berkeley post-doctoral fellow who recently joined the UC San Francisco faculty as an assistant professor of pharmaceutical chemistry. "We are not simply linking cells together, we are linking them together in 3-D arrangements, which introduces a whole new level of cellular behavior which you would never see in 2-D environments."

Gartner and Bertozzi, the T.Z. and Irmgard Chu Distinguished Professor at UC Berkeley and a Howard Hughes Medical Institute investigator, report on their assembly of three-dimensional microtissues this week in the online early edition of the journal Proceedings of the National Academy of Sciences.

One type of cell that needs other cells to make it work properly is the stem cell, Bertozzi noted. Theoretically, using Gartner and Bertozzi's chemical technique, it should be possible to assemble stem cells with their helper cells into a functioning tissue that would make stem cells easier to study outside the body.

"In principal, we might be able to build a stem cell niche from scratch using our techniques, and then study those very well defined structures in controlled environments," Bertozzi said.

Bertozzi noted that most of the body's organs are a collection of many cell types that need to be in actual physical contact to operate properly. The pancreas, for example, is a collection of specialized cells, including insulin-secreting beta cells, that "sense glucose from the environment and respond by producing insulin. A complex feedback regulatory loop goes into all of this, and you need more than one cell type to achieve such regulation."

"If you really want to understand the way these cells behave in an organism, especially a human, you would like to recapitulate that environment as closely as possible in vitro," Gartner said. "We are trying to do that, with the aim that the rules we learn may help us control them better."

Gartner and Bertozzi assembled three types of cultured cells into onion-like layers by using two established technologies: DNA hybridization and Staudinger chemistry. DNA hybridization is like a "programmable glue," she said, that can stick cells together because of the highly precise nature of binding between complementary DNA strands: One strand of the DNA helix binds only to its complementary strand and nothing else. By putting a short DNA strand on the surface of one cell and its complementary strand on another cell, the researchers assure that the two lock together exclusively.

To get these specific DNA strands onto the cells, they used chemical reactions that do not interfere with cellular chemistry but nevertheless stick desired chemicals onto the cell surface. The technique for adding unusual but benign chemicals to cells was developed by Bertozzi more than a decade ago based on a chemical reaction called the Staudinger ligation.

After proving that they could assemble cells into microtissues, Gartner and Bertozzi constructed a minute gland – analogous to a lymph node, for example – such that one cell type secreted interleukin-3 and thereby kept a second cell type alive.

"What we did is build a little miniaturized, stripped-down system that operates on the same principle and looks like a miniaturized lymph node, an arrangement where two cells communicate with each another and one requires a signal from the other," she said. "The critical thing is that the two cells have to have a cell junction. If you just mix the cells randomly without connection, the system doesn't have the same properties."

She expects that eventually, clusters could be built on clusters to make artificial organs that someday may be implanted into humans.

"Our method allows the assembly of multicellular structures from the bottom up. In other words, we can control the neighbors of each individual cell in a mixed population," she said. "By this method, it may be possible to assemble tissues with more sophisticated properties."

One interesting aspect of the technique is that DNA hybridization seems to be temporary, like a suture. Eventually, the cells may substitute their own cell-cell adhesion molecules for the DNA, creating a well-knit and seemingly normal, biological system.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

Study shows how water could have flowed on 'cold and icy' ancient Mars

18.10.2017 | Physics and Astronomy

Navigational view of the brain thanks to powerful X-rays

18.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>