Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Assembling cells into artificial 3-D microtissues, including a tiny gland

06.03.2009
Hybridized DNA is glue that sticks these cells together to resemble real tissue

As synthetic biologists cram more and more genes into microbes to make genetically engineered organisms produce ever more complex drugs and chemicals, two University of California chemists have gone a step further.

They have assembled different types of genetically engineered cells into synthetic microtissues that can perform functions such as secreting and responding to hormones, promising more complex biological capabilities than a single cell alone could produce.

"This is like another level of hierarchical complexity for synthetic biology," said coauthor Carolyn Bertozzi, UC Berkeley professor of chemistry and of molecular and cell biology and director of the Molecular Foundry at Lawrence Berkeley National Laboratory. "People used to think of the cell as the fundamental unit. But the truth is that there are collections of cells that can do things that no individual cell could ever be programmed to do. We are trying to achieve the properties of organs now, though not yet organisms."

While the synthetic tissues today comprise only a handful of cells, they could eventually be scaled up to make artificial organs that could help scientists understand the interactions among cells in the body and might some day substitute for human organs.

"We are really taking this into the third dimension now, which for me is particularly exciting," said first author Zev J. Gartner, a former UC Berkeley post-doctoral fellow who recently joined the UC San Francisco faculty as an assistant professor of pharmaceutical chemistry. "We are not simply linking cells together, we are linking them together in 3-D arrangements, which introduces a whole new level of cellular behavior which you would never see in 2-D environments."

Gartner and Bertozzi, the T.Z. and Irmgard Chu Distinguished Professor at UC Berkeley and a Howard Hughes Medical Institute investigator, report on their assembly of three-dimensional microtissues this week in the online early edition of the journal Proceedings of the National Academy of Sciences.

One type of cell that needs other cells to make it work properly is the stem cell, Bertozzi noted. Theoretically, using Gartner and Bertozzi's chemical technique, it should be possible to assemble stem cells with their helper cells into a functioning tissue that would make stem cells easier to study outside the body.

"In principal, we might be able to build a stem cell niche from scratch using our techniques, and then study those very well defined structures in controlled environments," Bertozzi said.

Bertozzi noted that most of the body's organs are a collection of many cell types that need to be in actual physical contact to operate properly. The pancreas, for example, is a collection of specialized cells, including insulin-secreting beta cells, that "sense glucose from the environment and respond by producing insulin. A complex feedback regulatory loop goes into all of this, and you need more than one cell type to achieve such regulation."

"If you really want to understand the way these cells behave in an organism, especially a human, you would like to recapitulate that environment as closely as possible in vitro," Gartner said. "We are trying to do that, with the aim that the rules we learn may help us control them better."

Gartner and Bertozzi assembled three types of cultured cells into onion-like layers by using two established technologies: DNA hybridization and Staudinger chemistry. DNA hybridization is like a "programmable glue," she said, that can stick cells together because of the highly precise nature of binding between complementary DNA strands: One strand of the DNA helix binds only to its complementary strand and nothing else. By putting a short DNA strand on the surface of one cell and its complementary strand on another cell, the researchers assure that the two lock together exclusively.

To get these specific DNA strands onto the cells, they used chemical reactions that do not interfere with cellular chemistry but nevertheless stick desired chemicals onto the cell surface. The technique for adding unusual but benign chemicals to cells was developed by Bertozzi more than a decade ago based on a chemical reaction called the Staudinger ligation.

After proving that they could assemble cells into microtissues, Gartner and Bertozzi constructed a minute gland – analogous to a lymph node, for example – such that one cell type secreted interleukin-3 and thereby kept a second cell type alive.

"What we did is build a little miniaturized, stripped-down system that operates on the same principle and looks like a miniaturized lymph node, an arrangement where two cells communicate with each another and one requires a signal from the other," she said. "The critical thing is that the two cells have to have a cell junction. If you just mix the cells randomly without connection, the system doesn't have the same properties."

She expects that eventually, clusters could be built on clusters to make artificial organs that someday may be implanted into humans.

"Our method allows the assembly of multicellular structures from the bottom up. In other words, we can control the neighbors of each individual cell in a mixed population," she said. "By this method, it may be possible to assemble tissues with more sophisticated properties."

One interesting aspect of the technique is that DNA hybridization seems to be temporary, like a suture. Eventually, the cells may substitute their own cell-cell adhesion molecules for the DNA, creating a well-knit and seemingly normal, biological system.

Robert Sanders | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>