Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aspirin Plus Co

13.01.2009
Organometallic compounds as new drugs? Cobalt-containing aspirin complex with potential anti-tumor properties

Despite considerable progress in modern chemotherapy, there remains a large demand for innovative anti-tumor agents.

A new approach involves modeling the pharmacological properties of established drugs with organometallic fragments. As a team of scientists from Berlin and Bochum (Germany), Innsbruck (Austria), and Leiden (The Netherlands) report in the journal Angewandte Chemie, cobalt–aspirin complexes have potential as cytostatics.

Most drugs used today are purely organic compounds. Stimulated by the enormous success of the inorganic complex cisplatin in tumor treatment, interest in metal complexes has grown. Within cells, metal complexes can participate in reactions that are not possible with conventional organic substances.

Aspirin (acetylsalicylic acid) belongs to the family of nonsteroidal antirheumatics (NSAR), which have anti-inflammatory and pain-relieving effects. The pharmacological effects of NSARs stem from the inhibition of enzymes in the cyclooxygenase family (COX). These enzymes not only play a central role in inflammatory processes, they also seem to be involved in tumor growth. NSARs have thus come into focus as potential cytostatics. It may be possible to improve anti-tumor activity in the case of aspirin by binding it to an organometallic fragment.

Within the scope of the “Biological Function of Organometallic Compounds” research group funded by the Deutsche Forschungsgemeinshaft (German Research Foundation, DFG), the team determined that “Co-Aspirin”, a hexacarbonyldicoboalt–aspirin complex, inhibits COX activity differently to aspirin. Whereas the effect of aspirin stems from the acetylation of a serine residue in the active center of COX, Co-Asprin does not attack this side chain, instead acetylating several other sites. This may block access to the active center of the enzyme, resulting in a different activity spectrum for the drug.

Experiments with zebra fish embryos showed that in contrast to aspirin, Co-Aspirin inhibits both cell growth and the formation of small blood vessels (angiogenesis). Tumors are dependent on newly formed blood vessels for their nutrients and can be starved out by the inhibition of angiogenesis. In addition, Co-Aspirin modulates other tumor-relevant metabolic pathways. For example, it activates the enzyme caspase, which is involved in processes that lead to apoptosis (programmed cell death).

Author: Ingo Ott, Freie Universität Berlin (Germany), http://userpage.fu-berlin.de/~ottingo/

Title: Modulation of the Biological Properties of Aspirin by Formation of Bioorganometallic Derivative

Angewandte Chemie International Edition 2009, 48, No. 6, 1160–1163, doi: 10.1002/anie.200803347

Ingo Ott | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://userpage.fu-berlin.de/~ottingo/

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>