Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aspirin Plus Co

13.01.2009
Organometallic compounds as new drugs? Cobalt-containing aspirin complex with potential anti-tumor properties

Despite considerable progress in modern chemotherapy, there remains a large demand for innovative anti-tumor agents.

A new approach involves modeling the pharmacological properties of established drugs with organometallic fragments. As a team of scientists from Berlin and Bochum (Germany), Innsbruck (Austria), and Leiden (The Netherlands) report in the journal Angewandte Chemie, cobalt–aspirin complexes have potential as cytostatics.

Most drugs used today are purely organic compounds. Stimulated by the enormous success of the inorganic complex cisplatin in tumor treatment, interest in metal complexes has grown. Within cells, metal complexes can participate in reactions that are not possible with conventional organic substances.

Aspirin (acetylsalicylic acid) belongs to the family of nonsteroidal antirheumatics (NSAR), which have anti-inflammatory and pain-relieving effects. The pharmacological effects of NSARs stem from the inhibition of enzymes in the cyclooxygenase family (COX). These enzymes not only play a central role in inflammatory processes, they also seem to be involved in tumor growth. NSARs have thus come into focus as potential cytostatics. It may be possible to improve anti-tumor activity in the case of aspirin by binding it to an organometallic fragment.

Within the scope of the “Biological Function of Organometallic Compounds” research group funded by the Deutsche Forschungsgemeinshaft (German Research Foundation, DFG), the team determined that “Co-Aspirin”, a hexacarbonyldicoboalt–aspirin complex, inhibits COX activity differently to aspirin. Whereas the effect of aspirin stems from the acetylation of a serine residue in the active center of COX, Co-Asprin does not attack this side chain, instead acetylating several other sites. This may block access to the active center of the enzyme, resulting in a different activity spectrum for the drug.

Experiments with zebra fish embryos showed that in contrast to aspirin, Co-Aspirin inhibits both cell growth and the formation of small blood vessels (angiogenesis). Tumors are dependent on newly formed blood vessels for their nutrients and can be starved out by the inhibition of angiogenesis. In addition, Co-Aspirin modulates other tumor-relevant metabolic pathways. For example, it activates the enzyme caspase, which is involved in processes that lead to apoptosis (programmed cell death).

Author: Ingo Ott, Freie Universität Berlin (Germany), http://userpage.fu-berlin.de/~ottingo/

Title: Modulation of the Biological Properties of Aspirin by Formation of Bioorganometallic Derivative

Angewandte Chemie International Edition 2009, 48, No. 6, 1160–1163, doi: 10.1002/anie.200803347

Ingo Ott | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://userpage.fu-berlin.de/~ottingo/

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>