Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aspirin Plus Co

13.01.2009
Organometallic compounds as new drugs? Cobalt-containing aspirin complex with potential anti-tumor properties

Despite considerable progress in modern chemotherapy, there remains a large demand for innovative anti-tumor agents.

A new approach involves modeling the pharmacological properties of established drugs with organometallic fragments. As a team of scientists from Berlin and Bochum (Germany), Innsbruck (Austria), and Leiden (The Netherlands) report in the journal Angewandte Chemie, cobalt–aspirin complexes have potential as cytostatics.

Most drugs used today are purely organic compounds. Stimulated by the enormous success of the inorganic complex cisplatin in tumor treatment, interest in metal complexes has grown. Within cells, metal complexes can participate in reactions that are not possible with conventional organic substances.

Aspirin (acetylsalicylic acid) belongs to the family of nonsteroidal antirheumatics (NSAR), which have anti-inflammatory and pain-relieving effects. The pharmacological effects of NSARs stem from the inhibition of enzymes in the cyclooxygenase family (COX). These enzymes not only play a central role in inflammatory processes, they also seem to be involved in tumor growth. NSARs have thus come into focus as potential cytostatics. It may be possible to improve anti-tumor activity in the case of aspirin by binding it to an organometallic fragment.

Within the scope of the “Biological Function of Organometallic Compounds” research group funded by the Deutsche Forschungsgemeinshaft (German Research Foundation, DFG), the team determined that “Co-Aspirin”, a hexacarbonyldicoboalt–aspirin complex, inhibits COX activity differently to aspirin. Whereas the effect of aspirin stems from the acetylation of a serine residue in the active center of COX, Co-Asprin does not attack this side chain, instead acetylating several other sites. This may block access to the active center of the enzyme, resulting in a different activity spectrum for the drug.

Experiments with zebra fish embryos showed that in contrast to aspirin, Co-Aspirin inhibits both cell growth and the formation of small blood vessels (angiogenesis). Tumors are dependent on newly formed blood vessels for their nutrients and can be starved out by the inhibition of angiogenesis. In addition, Co-Aspirin modulates other tumor-relevant metabolic pathways. For example, it activates the enzyme caspase, which is involved in processes that lead to apoptosis (programmed cell death).

Author: Ingo Ott, Freie Universität Berlin (Germany), http://userpage.fu-berlin.de/~ottingo/

Title: Modulation of the Biological Properties of Aspirin by Formation of Bioorganometallic Derivative

Angewandte Chemie International Edition 2009, 48, No. 6, 1160–1163, doi: 10.1002/anie.200803347

Ingo Ott | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://userpage.fu-berlin.de/~ottingo/

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>