Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asian lady beetles use biological weapons against their European relatives

17.05.2013
Invasive species from Eastern Asia uses microsporidia in order to out-compete native lady beetles.

Once introduced for biological pest control, Asian lady beetle Harmonia axyridis populations have been increasing uncontrollably in the US and Europe since the turn of the millennium.


During spring and fall, mass occurrences of the Asian lady beetle can often be observed.
Andreas Vilcinskas, Justus Liebig University, Giessen

The species has been proliferating rapidly in Germany; conservationists fear that the Asian lady beetle will out-compete native beetle species. Scientists from the University of Giessen and the Max Planck Institute for Chemical Ecology in Jena, Germany, have now found the reason why this animal is so successful.

Apart from a strongly antibiotic substance − a compound called harmonine − and antimicrobial peptides, its body fluid, the hemolymph, contains microsporidia. These tiny fungus-like protozoa parasitize body cells and can cause immense harm to their host. The Asian lady beetle is obviously resistant to these parasites in its own body. However, transferred to native species, microsporidia can be lethal. SCIENCE, May 17, 2013, DOI: 10.1126/science.1234032)

The Asian lady beetle − a model organism for studying biological invasions

Because of its delicate, yet extremely variable, patterning, the lady beetle species Harmonia axyridis is sometimes called Harlequin ladybird. However, this insect has no comical characteristics. At the end of the last century, the species − which is native e.g. in China and Japan and therefore called Asian lady beetle − was successfully used in European greenhouses to keep aphid populations in check: It can devour hundreds of aphids per day, as well as many bug species or insect eggs. Yet today, this “bio killer” has escaped from the greenhouses and is spreading massively, but: A rapid and successful propagation of a neozoon − the biological term for a species which is invading new habitats and ecosystems − is not just an inevitable matter of course.

In most cases, such a neozoon species doesn’t survive or else its population density remains very low, because original and adapted life forms usually prevail in their ecological niche and win interspecific competitions. However, as soon as Harmonia axyridis is released into nature, it invades all habitats, especially those occupied by beetle species that feed on aphids. Within a very short period of time, native beetles are out-competed and the intruders have taken over. During the fall, major congregations of Asian lady beetles can be observed as swarms of insects search for hibernation places in houses or other sheltered areas.

They are not only a nuisance, they can also cause serious allergic reactions in humans. When prey becomes scarce, Asian lady beetles may feed on grapes as a substitute diet and hence, they are often found on grape-vines in vineyards in the fall. Once in the mash, the defensive chemical substances in their hemolymph negatively affect the taste of wine.

Like most ladybug species, the Asian lady beetle reflexively secretes fluid from its hemolymph as soon as it is attacked by potential enemies. Hemolymph fluid contains toxins and is therefore defensive. Can the Asian lady beetle’s secret of success be found in the hemolymph?

Microsporidia, tiny parasites present in the hemolymph of Harmonia axyridis, are the key to successfully out-competing native species

In comparison to other ladybug species, the hemolymph of H. axyridis contains a wide range of different antibacterial peptides − small proteins that insects use to fend off pathogens. Andreas Vilcinskas, Justus Liebig University in Giessen, Germany, and Heiko Vogel, Max Planck Institute for Chemical Ecology in Jena, Germany, studied the complex immune system of the insects and were able to isolate the genes that encode the enormous antimicrobial repertoire of H. axyridis. The hemolymph also contains a special substance, harmonine, which has a strongly antibacterial effect. Harmonine is only found in the hemolymph of H. axyridis, where is it abundant. Both the proteins and harmonine are of interest in medical research where they offer promising targets for the development of novel antibiotics, potentially even those against malaria.
When H. axyridis and its relative Coccinella septempunctata, which is native to Germany, are infected with pathogenic bacteria, both beetle species produce antibacterial peptides. However, the Asian lady beetle switches from a general hygiene using harmonine to an effective defense strategy based on dozens of peptides. “This alone, however, does not answer our main question: Is such a strong immune system, capable of fending off pathogens, the sole reason why H. axyridis is conquering the habitats of other beetle species all over the world? Can Harmonia out-compete other species just because it is more resistant to pathogens and, as a consequence, has a better chance to survive − or do other important factors play a role?” asks Heiko Vogel. Although lady beetles generally compete for their common food source, aphids, some beetles also eat each other. This phenomenon, called intraguild predation, is an important factor in the competition among predating lady beetles − especially if they compete against the particularly aggressive invader H. axyridis. H. axyridis can feed on native lady beetles without harmful consequences. In contrast, native lady beetles that feed on H. axyridis die. How can that be?

A key experiment provided the answer to this question. The hemolymph of H. axyridis contains, apart from harmonine and antimicrobial peptides, a third defensive component: tiny biological weapons called microsporidia. These spores enable the invader to infect other beetle species, mainly because it is common among lady beetles to predate the eggs and larvae of other species. In their experiment, the scientists first injected harmonine into native C. septempunctata lady beetles, to establish whether this chemical substance harms the insects. In fact, the injection of hemolymph or purified microsporidia from H. axyridis had lethal consequences. A look through a high-resolution microscope revealed innumerable tiny spores in the hemolymph of the Asian lady beetle, spores that were even tinier than hemocytes. Microsporidic spores “germinate” and attack the cells of C. septempunctata; however, they do not germinate in H. axyridis. The Asian lady beetle can disable these biological weapons in its own hemolymph, but the spores become active as soon as they reach the body fluid of other beetle species. H. axyridis’ very strong immunity against pathogens and the effect of the microsporidia may explain the ecological success of the Asian invader as it continues to out-compete native species across Europe. Now the researchers are interested in finding out how H. axyridis can disable the microsporidia in its own hemolymph. [JWK/AO]
Original Publications:

Vilcinskas, A., Stoecker, K., Schmidtberg, H., Röhrich, C., Vogel, H. (2013). Invasive harlequin ladybird carries biological weapons against native competitors. SCIENCE. May 17, 2013, DOI: 10.1126/science.1234032

http://dx.doi.org/10.1126/science.1234032

Schmidtberg, H., Röhrich, C., Vogel, H., Vilcinskas, A. (2013). A switch from constitutive chemical defense to inducible innate immune responses in the invasive ladybird Harmonia axyridis. Biology Letters 9: 20130006.

http://dx.doi.org/10.1098/rsbl.2013.0006

Vilcinskas, A., Mukherjee, K., Vogel, H. (2013). Expansion of the antimicrobial peptide repertoire in the invasive ladybird Harmonia axyridis. Proceedings of the Royal Society of London Series B - Biological Sciences. 280: 20122113.
http://dx.doi.org/10.1098/rspb.2012.2113

Further Information

Prof. Dr. Andreas Vilcinskas, +49 641 9937-600, Andreas.Vilcinskas@agrar.uni-giessen.de
Dr. Heiko Vogel, +49 3641 57-1512, hvogel@ice.mpg.de

Picture Requests:

Angela Overmeyer M.A., +49 3641 57-2110, overmeyer@ice.mpg.de or via download from http://www.ice.mpg.de/ext/735.html

Angela Overmeyer | Max-Planck-Institut
Further information:
http://www.ice.mpg.de/ext/1025.html?&L=0

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>