Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asian lady beetles use biological weapons against their European relatives

17.05.2013
Invasive species from Eastern Asia uses microsporidia in order to out-compete native lady beetles.

Once introduced for biological pest control, Asian lady beetle Harmonia axyridis populations have been increasing uncontrollably in the US and Europe since the turn of the millennium.


During spring and fall, mass occurrences of the Asian lady beetle can often be observed.
Andreas Vilcinskas, Justus Liebig University, Giessen

The species has been proliferating rapidly in Germany; conservationists fear that the Asian lady beetle will out-compete native beetle species. Scientists from the University of Giessen and the Max Planck Institute for Chemical Ecology in Jena, Germany, have now found the reason why this animal is so successful.

Apart from a strongly antibiotic substance − a compound called harmonine − and antimicrobial peptides, its body fluid, the hemolymph, contains microsporidia. These tiny fungus-like protozoa parasitize body cells and can cause immense harm to their host. The Asian lady beetle is obviously resistant to these parasites in its own body. However, transferred to native species, microsporidia can be lethal. SCIENCE, May 17, 2013, DOI: 10.1126/science.1234032)

The Asian lady beetle − a model organism for studying biological invasions

Because of its delicate, yet extremely variable, patterning, the lady beetle species Harmonia axyridis is sometimes called Harlequin ladybird. However, this insect has no comical characteristics. At the end of the last century, the species − which is native e.g. in China and Japan and therefore called Asian lady beetle − was successfully used in European greenhouses to keep aphid populations in check: It can devour hundreds of aphids per day, as well as many bug species or insect eggs. Yet today, this “bio killer” has escaped from the greenhouses and is spreading massively, but: A rapid and successful propagation of a neozoon − the biological term for a species which is invading new habitats and ecosystems − is not just an inevitable matter of course.

In most cases, such a neozoon species doesn’t survive or else its population density remains very low, because original and adapted life forms usually prevail in their ecological niche and win interspecific competitions. However, as soon as Harmonia axyridis is released into nature, it invades all habitats, especially those occupied by beetle species that feed on aphids. Within a very short period of time, native beetles are out-competed and the intruders have taken over. During the fall, major congregations of Asian lady beetles can be observed as swarms of insects search for hibernation places in houses or other sheltered areas.

They are not only a nuisance, they can also cause serious allergic reactions in humans. When prey becomes scarce, Asian lady beetles may feed on grapes as a substitute diet and hence, they are often found on grape-vines in vineyards in the fall. Once in the mash, the defensive chemical substances in their hemolymph negatively affect the taste of wine.

Like most ladybug species, the Asian lady beetle reflexively secretes fluid from its hemolymph as soon as it is attacked by potential enemies. Hemolymph fluid contains toxins and is therefore defensive. Can the Asian lady beetle’s secret of success be found in the hemolymph?

Microsporidia, tiny parasites present in the hemolymph of Harmonia axyridis, are the key to successfully out-competing native species

In comparison to other ladybug species, the hemolymph of H. axyridis contains a wide range of different antibacterial peptides − small proteins that insects use to fend off pathogens. Andreas Vilcinskas, Justus Liebig University in Giessen, Germany, and Heiko Vogel, Max Planck Institute for Chemical Ecology in Jena, Germany, studied the complex immune system of the insects and were able to isolate the genes that encode the enormous antimicrobial repertoire of H. axyridis. The hemolymph also contains a special substance, harmonine, which has a strongly antibacterial effect. Harmonine is only found in the hemolymph of H. axyridis, where is it abundant. Both the proteins and harmonine are of interest in medical research where they offer promising targets for the development of novel antibiotics, potentially even those against malaria.
When H. axyridis and its relative Coccinella septempunctata, which is native to Germany, are infected with pathogenic bacteria, both beetle species produce antibacterial peptides. However, the Asian lady beetle switches from a general hygiene using harmonine to an effective defense strategy based on dozens of peptides. “This alone, however, does not answer our main question: Is such a strong immune system, capable of fending off pathogens, the sole reason why H. axyridis is conquering the habitats of other beetle species all over the world? Can Harmonia out-compete other species just because it is more resistant to pathogens and, as a consequence, has a better chance to survive − or do other important factors play a role?” asks Heiko Vogel. Although lady beetles generally compete for their common food source, aphids, some beetles also eat each other. This phenomenon, called intraguild predation, is an important factor in the competition among predating lady beetles − especially if they compete against the particularly aggressive invader H. axyridis. H. axyridis can feed on native lady beetles without harmful consequences. In contrast, native lady beetles that feed on H. axyridis die. How can that be?

A key experiment provided the answer to this question. The hemolymph of H. axyridis contains, apart from harmonine and antimicrobial peptides, a third defensive component: tiny biological weapons called microsporidia. These spores enable the invader to infect other beetle species, mainly because it is common among lady beetles to predate the eggs and larvae of other species. In their experiment, the scientists first injected harmonine into native C. septempunctata lady beetles, to establish whether this chemical substance harms the insects. In fact, the injection of hemolymph or purified microsporidia from H. axyridis had lethal consequences. A look through a high-resolution microscope revealed innumerable tiny spores in the hemolymph of the Asian lady beetle, spores that were even tinier than hemocytes. Microsporidic spores “germinate” and attack the cells of C. septempunctata; however, they do not germinate in H. axyridis. The Asian lady beetle can disable these biological weapons in its own hemolymph, but the spores become active as soon as they reach the body fluid of other beetle species. H. axyridis’ very strong immunity against pathogens and the effect of the microsporidia may explain the ecological success of the Asian invader as it continues to out-compete native species across Europe. Now the researchers are interested in finding out how H. axyridis can disable the microsporidia in its own hemolymph. [JWK/AO]
Original Publications:

Vilcinskas, A., Stoecker, K., Schmidtberg, H., Röhrich, C., Vogel, H. (2013). Invasive harlequin ladybird carries biological weapons against native competitors. SCIENCE. May 17, 2013, DOI: 10.1126/science.1234032

http://dx.doi.org/10.1126/science.1234032

Schmidtberg, H., Röhrich, C., Vogel, H., Vilcinskas, A. (2013). A switch from constitutive chemical defense to inducible innate immune responses in the invasive ladybird Harmonia axyridis. Biology Letters 9: 20130006.

http://dx.doi.org/10.1098/rsbl.2013.0006

Vilcinskas, A., Mukherjee, K., Vogel, H. (2013). Expansion of the antimicrobial peptide repertoire in the invasive ladybird Harmonia axyridis. Proceedings of the Royal Society of London Series B - Biological Sciences. 280: 20122113.
http://dx.doi.org/10.1098/rspb.2012.2113

Further Information

Prof. Dr. Andreas Vilcinskas, +49 641 9937-600, Andreas.Vilcinskas@agrar.uni-giessen.de
Dr. Heiko Vogel, +49 3641 57-1512, hvogel@ice.mpg.de

Picture Requests:

Angela Overmeyer M.A., +49 3641 57-2110, overmeyer@ice.mpg.de or via download from http://www.ice.mpg.de/ext/735.html

Angela Overmeyer | Max-Planck-Institut
Further information:
http://www.ice.mpg.de/ext/1025.html?&L=0

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>