Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asbestos exposure linked to genetic mutation

14.06.2011
Mice inhabiting a northern town of Israel known for its high concentration of asbestos-contaminated dust, have a higher level of genetic somatic mutations, compared with other regions where asbestos pollution levels are lower.

This has been shown in a new study carried out by Dr. Rachel Ben-Shlomo and Dr. Uri Shanas of the University of Haifa's Department of Biology in Oranim. "This study clearly indicates that there is a link between the higher levels of asbestos in the environment and the frequency of genetic somatic mutations in the mammals," the scientists said.

Earlier studies of asbestos have already shown that the thin fibers, which penetrate the body by inhalation or through consumption of food contaminated with the material, not only cause certain cancers but also genetic mutations in DNA structures. It is also known that asbestos is a material that decomposes slowly, over many years.

Data from the Israeli Ministry of Health indicate a rise in the number of cancer patients from exposure to asbestos in the Western Galilee region of northern Israel, and therefore the scientists set out to examine whether genetic mutations are found in the mouse population living in its northern town of Nahariya. They chose to probe mutations in mice because their generations are renewed every three months, so it could be assumed for the study that dozens of generations of this sample population in Nahariya had already been exposed to the fibers.

Wild mice from two locations were sampled � one group living close to a factory that manufactured asbestos-based products in Nahariya during 1952-1997, and a second group from a town located 50 kilometers, or 31 miles, from Nahariya and where no known asbestos pollutants are found. Samples were taken from both groups and six sites in the DNA were examined for genetic differences between the groups.

The results indicated differences between the groups' DNA and that the Nahariya-based mice had higher levels of genetic somatic mutations.

"These findings teach us that the pollutive, mutagenic asbestos increases somatic mutational frequency, which can in turn heighten the chances of developing cancerous growths," the researchers concluded.

For more information:
Rachel Feldman
Division of Marketing and Media
University of Haifa
press@univ.haifa.ac.il
+972-54-5352435

Rachel Feldman | University of Haifa
Further information:
http://www.haifa.ac.il

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>