Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Asbestos exposure linked to genetic mutation

14.06.2011
Mice inhabiting a northern town of Israel known for its high concentration of asbestos-contaminated dust, have a higher level of genetic somatic mutations, compared with other regions where asbestos pollution levels are lower.

This has been shown in a new study carried out by Dr. Rachel Ben-Shlomo and Dr. Uri Shanas of the University of Haifa's Department of Biology in Oranim. "This study clearly indicates that there is a link between the higher levels of asbestos in the environment and the frequency of genetic somatic mutations in the mammals," the scientists said.

Earlier studies of asbestos have already shown that the thin fibers, which penetrate the body by inhalation or through consumption of food contaminated with the material, not only cause certain cancers but also genetic mutations in DNA structures. It is also known that asbestos is a material that decomposes slowly, over many years.

Data from the Israeli Ministry of Health indicate a rise in the number of cancer patients from exposure to asbestos in the Western Galilee region of northern Israel, and therefore the scientists set out to examine whether genetic mutations are found in the mouse population living in its northern town of Nahariya. They chose to probe mutations in mice because their generations are renewed every three months, so it could be assumed for the study that dozens of generations of this sample population in Nahariya had already been exposed to the fibers.

Wild mice from two locations were sampled � one group living close to a factory that manufactured asbestos-based products in Nahariya during 1952-1997, and a second group from a town located 50 kilometers, or 31 miles, from Nahariya and where no known asbestos pollutants are found. Samples were taken from both groups and six sites in the DNA were examined for genetic differences between the groups.

The results indicated differences between the groups' DNA and that the Nahariya-based mice had higher levels of genetic somatic mutations.

"These findings teach us that the pollutive, mutagenic asbestos increases somatic mutational frequency, which can in turn heighten the chances of developing cancerous growths," the researchers concluded.

For more information:
Rachel Feldman
Division of Marketing and Media
University of Haifa
press@univ.haifa.ac.il
+972-54-5352435

Rachel Feldman | University of Haifa
Further information:
http://www.haifa.ac.il

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>