Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial tissue – New impetus for the development of implants

18.01.2012
The generation of artificial tissue for implants has long been the focus of medical research.

One of the biggest challenges has been to create multi-layer tissue structures designed to enable the diffusion of nutrients for surrounding cells in a similar manner to natural tissue.

This task is now being tackled by a consortium of 16 European partners from industry and the research community under the leadership of the Fraunhofer Institute for Laser Technology ILT.

On November 23rd and 24th, 2011, Fraunhofer ILT held the kick-off meeting for the project ArtiVasc 3D, which will receive 7.8 million euros of funding from the European Commission under the Seventh Framework Programme. A team of engineers, scientists and medical experts has announced its goal to develop a new process of engineering a vascularized scaffold for artificial tissue, in other words to provide the tissue with a blood supply similar to that of natural arteries. Using current technologies, skin grafts that do not require vascularization cannot be grown beyond a surface area of 1 cm² and a thickness of 1-2 mm. For larger and thicker areas of tissue, vascularization is necessary.

Over the next four years, the consortium will combine different technologies from the fields of additive manufacturing and biofunctionalization to develop a process capable of engineering blood vessels in an artificial scaffold system. These vascularized scaffolds will be populated with autologous cells in order to enable the formation of vascularized fatty tissue and, ultimately, artificial skin. This artificial skin will be used as an in vitro test system – for example to reduce the number of animal experiments – and employed directly in skin grafts.

Your contacts at Fraunhofer ILT
Our experts are on hand to answer your questions:
Dipl.-Biol. Nadine Seiler
Biotechnology and Laser Therapy
Phone +49 241 8906-605
nadine.seiler@ilt.fraunhofer.de
Dr. Arnold Gillner
Manager of Ablation and Joining expert group
Phone +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>