Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial tissue – New impetus for the development of implants

18.01.2012
The generation of artificial tissue for implants has long been the focus of medical research.

One of the biggest challenges has been to create multi-layer tissue structures designed to enable the diffusion of nutrients for surrounding cells in a similar manner to natural tissue.

This task is now being tackled by a consortium of 16 European partners from industry and the research community under the leadership of the Fraunhofer Institute for Laser Technology ILT.

On November 23rd and 24th, 2011, Fraunhofer ILT held the kick-off meeting for the project ArtiVasc 3D, which will receive 7.8 million euros of funding from the European Commission under the Seventh Framework Programme. A team of engineers, scientists and medical experts has announced its goal to develop a new process of engineering a vascularized scaffold for artificial tissue, in other words to provide the tissue with a blood supply similar to that of natural arteries. Using current technologies, skin grafts that do not require vascularization cannot be grown beyond a surface area of 1 cm² and a thickness of 1-2 mm. For larger and thicker areas of tissue, vascularization is necessary.

Over the next four years, the consortium will combine different technologies from the fields of additive manufacturing and biofunctionalization to develop a process capable of engineering blood vessels in an artificial scaffold system. These vascularized scaffolds will be populated with autologous cells in order to enable the formation of vascularized fatty tissue and, ultimately, artificial skin. This artificial skin will be used as an in vitro test system – for example to reduce the number of animal experiments – and employed directly in skin grafts.

Your contacts at Fraunhofer ILT
Our experts are on hand to answer your questions:
Dipl.-Biol. Nadine Seiler
Biotechnology and Laser Therapy
Phone +49 241 8906-605
nadine.seiler@ilt.fraunhofer.de
Dr. Arnold Gillner
Manager of Ablation and Joining expert group
Phone +49 241 8906-148
arnold.gillner@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstrasse 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121

Axel Bauer | Fraunhofer-Institut
Further information:
http://www.ilt.fraunhofer.de

More articles from Life Sciences:

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

nachricht What happens in the cell nucleus after fertilization
06.12.2016 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>