Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial Reddener

19.10.2009
New synthetic route for EPO and other glycoprotein analogues

Erythropoetin, abbreviated EPO, has gained a scandalous reputation as a doping agent for racing cyclists. The name is derived from the ancient Greek erythros “red” and poiein “to make”, a fitting designation for this important growth factor, which is responsible for the formation of red blood cells in the body.

Biotechnologically produced erythropoetin, aside from its implementation as a drug for cyclists, is primarily used to treat anemia in dialysis patients after aggressive chemotherapy. A Japanese and British team led by Yasuhiro Kajihara has now successfully produced analogues of this factor in a synthesis that is half biotechnological and half chemical. As the researchers report in the journal Angewandte Chemie, this synthetic route could be an attractive general approach for the production of glycoproteins—proteins that have side-chains of sugar building blocks.

EPO is a well-investigated glycoprotein with a known, clearly delineated biological function. It is thus favored as a model glycoprotein. Its protein component is made of 166 amino acids, and four complex sugar chains (oligosaccharides) are bound to it like branched antennas. They increase the lifetime of the protein in the blood.

Glycoproteins are important pharmacological agents; however, they are difficult to produce. In cell cultures, no uniform saccharide chains are formed. In addition, bacteria are not able to recreate the complex oligosaccharides found in mammals. The alternative approach, chemical synthesis, is capable of producing tailored, uniform glycoproteins that can fulfill the function of glycoproteins as drugs and for research. However, this approach is very expensive.

The team has found a happy medium: they used a biotechnology approach to produce only one part of the EPO protein chain in a bacterial culture. They used chemical synthesis to produce the second, shorter part of the protein chain with the sugar antennas. They introduced a synthetic anchoring site, to which sugars can be chemically attached. The saccharide used was a branched complex sialyloligosaccharide from egg yolks. In the final step, the researchers hooked together the two protein chains by a method known as native chemical ligation.

Folding experiments demonstrated that, like natural EPO, the synthetic EPO analogue assumes a helical structure. Cell proliferation assays with bone marrow cells yielded a biological activity equal to that of the original. In vivo, the analogue could not increase the red-blood-cell count in the same way as true EPO. The researchers hope that by using different, more highly branched oligosaccharides they will be able to create analogues that also demonstrate high bioactivity in vivo.

Author: Yasuhiro Kajihara, Yokohama City University (Japan), mailto:kajihara@chem.sci.osaka-u.ac.jp

Title: Design and Synthesis of a Homogeneous Erythropoietin Analogue with Two Human Complex-Type Sialyloligosaccharides: Combined Use of Chemical and Bacterial Protein Expression Methods

Angewandte Chemie International Edition, doi: 10.1002/anie.200904376

Yasuhiro Kajihara | Angewandte Chemie
Further information:
http://www.chem.sci.osaka-u.ac.jp
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht Nerves control the body’s bacterial community
26.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Ageless ears? Elderly barn owls do not become hard of hearing
26.09.2017 | Carl von Ossietzky-Universität Oldenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>