Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial Reddener

19.10.2009
New synthetic route for EPO and other glycoprotein analogues

Erythropoetin, abbreviated EPO, has gained a scandalous reputation as a doping agent for racing cyclists. The name is derived from the ancient Greek erythros “red” and poiein “to make”, a fitting designation for this important growth factor, which is responsible for the formation of red blood cells in the body.

Biotechnologically produced erythropoetin, aside from its implementation as a drug for cyclists, is primarily used to treat anemia in dialysis patients after aggressive chemotherapy. A Japanese and British team led by Yasuhiro Kajihara has now successfully produced analogues of this factor in a synthesis that is half biotechnological and half chemical. As the researchers report in the journal Angewandte Chemie, this synthetic route could be an attractive general approach for the production of glycoproteins—proteins that have side-chains of sugar building blocks.

EPO is a well-investigated glycoprotein with a known, clearly delineated biological function. It is thus favored as a model glycoprotein. Its protein component is made of 166 amino acids, and four complex sugar chains (oligosaccharides) are bound to it like branched antennas. They increase the lifetime of the protein in the blood.

Glycoproteins are important pharmacological agents; however, they are difficult to produce. In cell cultures, no uniform saccharide chains are formed. In addition, bacteria are not able to recreate the complex oligosaccharides found in mammals. The alternative approach, chemical synthesis, is capable of producing tailored, uniform glycoproteins that can fulfill the function of glycoproteins as drugs and for research. However, this approach is very expensive.

The team has found a happy medium: they used a biotechnology approach to produce only one part of the EPO protein chain in a bacterial culture. They used chemical synthesis to produce the second, shorter part of the protein chain with the sugar antennas. They introduced a synthetic anchoring site, to which sugars can be chemically attached. The saccharide used was a branched complex sialyloligosaccharide from egg yolks. In the final step, the researchers hooked together the two protein chains by a method known as native chemical ligation.

Folding experiments demonstrated that, like natural EPO, the synthetic EPO analogue assumes a helical structure. Cell proliferation assays with bone marrow cells yielded a biological activity equal to that of the original. In vivo, the analogue could not increase the red-blood-cell count in the same way as true EPO. The researchers hope that by using different, more highly branched oligosaccharides they will be able to create analogues that also demonstrate high bioactivity in vivo.

Author: Yasuhiro Kajihara, Yokohama City University (Japan), mailto:kajihara@chem.sci.osaka-u.ac.jp

Title: Design and Synthesis of a Homogeneous Erythropoietin Analogue with Two Human Complex-Type Sialyloligosaccharides: Combined Use of Chemical and Bacterial Protein Expression Methods

Angewandte Chemie International Edition, doi: 10.1002/anie.200904376

Yasuhiro Kajihara | Angewandte Chemie
Further information:
http://www.chem.sci.osaka-u.ac.jp
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>