Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial Reddener

19.10.2009
New synthetic route for EPO and other glycoprotein analogues

Erythropoetin, abbreviated EPO, has gained a scandalous reputation as a doping agent for racing cyclists. The name is derived from the ancient Greek erythros “red” and poiein “to make”, a fitting designation for this important growth factor, which is responsible for the formation of red blood cells in the body.

Biotechnologically produced erythropoetin, aside from its implementation as a drug for cyclists, is primarily used to treat anemia in dialysis patients after aggressive chemotherapy. A Japanese and British team led by Yasuhiro Kajihara has now successfully produced analogues of this factor in a synthesis that is half biotechnological and half chemical. As the researchers report in the journal Angewandte Chemie, this synthetic route could be an attractive general approach for the production of glycoproteins—proteins that have side-chains of sugar building blocks.

EPO is a well-investigated glycoprotein with a known, clearly delineated biological function. It is thus favored as a model glycoprotein. Its protein component is made of 166 amino acids, and four complex sugar chains (oligosaccharides) are bound to it like branched antennas. They increase the lifetime of the protein in the blood.

Glycoproteins are important pharmacological agents; however, they are difficult to produce. In cell cultures, no uniform saccharide chains are formed. In addition, bacteria are not able to recreate the complex oligosaccharides found in mammals. The alternative approach, chemical synthesis, is capable of producing tailored, uniform glycoproteins that can fulfill the function of glycoproteins as drugs and for research. However, this approach is very expensive.

The team has found a happy medium: they used a biotechnology approach to produce only one part of the EPO protein chain in a bacterial culture. They used chemical synthesis to produce the second, shorter part of the protein chain with the sugar antennas. They introduced a synthetic anchoring site, to which sugars can be chemically attached. The saccharide used was a branched complex sialyloligosaccharide from egg yolks. In the final step, the researchers hooked together the two protein chains by a method known as native chemical ligation.

Folding experiments demonstrated that, like natural EPO, the synthetic EPO analogue assumes a helical structure. Cell proliferation assays with bone marrow cells yielded a biological activity equal to that of the original. In vivo, the analogue could not increase the red-blood-cell count in the same way as true EPO. The researchers hope that by using different, more highly branched oligosaccharides they will be able to create analogues that also demonstrate high bioactivity in vivo.

Author: Yasuhiro Kajihara, Yokohama City University (Japan), mailto:kajihara@chem.sci.osaka-u.ac.jp

Title: Design and Synthesis of a Homogeneous Erythropoietin Analogue with Two Human Complex-Type Sialyloligosaccharides: Combined Use of Chemical and Bacterial Protein Expression Methods

Angewandte Chemie International Edition, doi: 10.1002/anie.200904376

Yasuhiro Kajihara | Angewandte Chemie
Further information:
http://www.chem.sci.osaka-u.ac.jp
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>