Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial Reddener

19.10.2009
New synthetic route for EPO and other glycoprotein analogues

Erythropoetin, abbreviated EPO, has gained a scandalous reputation as a doping agent for racing cyclists. The name is derived from the ancient Greek erythros “red” and poiein “to make”, a fitting designation for this important growth factor, which is responsible for the formation of red blood cells in the body.

Biotechnologically produced erythropoetin, aside from its implementation as a drug for cyclists, is primarily used to treat anemia in dialysis patients after aggressive chemotherapy. A Japanese and British team led by Yasuhiro Kajihara has now successfully produced analogues of this factor in a synthesis that is half biotechnological and half chemical. As the researchers report in the journal Angewandte Chemie, this synthetic route could be an attractive general approach for the production of glycoproteins—proteins that have side-chains of sugar building blocks.

EPO is a well-investigated glycoprotein with a known, clearly delineated biological function. It is thus favored as a model glycoprotein. Its protein component is made of 166 amino acids, and four complex sugar chains (oligosaccharides) are bound to it like branched antennas. They increase the lifetime of the protein in the blood.

Glycoproteins are important pharmacological agents; however, they are difficult to produce. In cell cultures, no uniform saccharide chains are formed. In addition, bacteria are not able to recreate the complex oligosaccharides found in mammals. The alternative approach, chemical synthesis, is capable of producing tailored, uniform glycoproteins that can fulfill the function of glycoproteins as drugs and for research. However, this approach is very expensive.

The team has found a happy medium: they used a biotechnology approach to produce only one part of the EPO protein chain in a bacterial culture. They used chemical synthesis to produce the second, shorter part of the protein chain with the sugar antennas. They introduced a synthetic anchoring site, to which sugars can be chemically attached. The saccharide used was a branched complex sialyloligosaccharide from egg yolks. In the final step, the researchers hooked together the two protein chains by a method known as native chemical ligation.

Folding experiments demonstrated that, like natural EPO, the synthetic EPO analogue assumes a helical structure. Cell proliferation assays with bone marrow cells yielded a biological activity equal to that of the original. In vivo, the analogue could not increase the red-blood-cell count in the same way as true EPO. The researchers hope that by using different, more highly branched oligosaccharides they will be able to create analogues that also demonstrate high bioactivity in vivo.

Author: Yasuhiro Kajihara, Yokohama City University (Japan), mailto:kajihara@chem.sci.osaka-u.ac.jp

Title: Design and Synthesis of a Homogeneous Erythropoietin Analogue with Two Human Complex-Type Sialyloligosaccharides: Combined Use of Chemical and Bacterial Protein Expression Methods

Angewandte Chemie International Edition, doi: 10.1002/anie.200904376

Yasuhiro Kajihara | Angewandte Chemie
Further information:
http://www.chem.sci.osaka-u.ac.jp
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>