Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New artificial protein mimics a part of the HIV outer coat

23.10.2013
A team of scientists at Duke Medicine and Memorial Sloan-Kettering Cancer Center has created an artificial protein coupled with a sugar molecule that mimics a key site on the outer coat of HIV where antibodies can bind to neutralize a wide variety of HIV strains.

Reported during the week of Oct. 21, 2013, in the journal Proceedings of the National Academy of Sciences, the finding provides a potential new strategy in vaccine development to elicit the broadly neutralizing antibodies considered essential for long-lasting protection from the ever-changing HIV virus.

The new protein was designed by Duke and Harvard University scientists and made by Samuel Danishefsky, Ph.D., and his team at Memorial Sloan Kettering Cancer Center in New York.

"This new protein will allow the testing of a major hypothesis for why broadly neutralizing antibodies are so difficult to produce -- that of competition between desired and undesired antibody responses," said senior author Barton F. Haynes, M.D., director of the Duke Human Vaccine Institute. "By immunizing with a vaccine that primarily has the desired target for the immune system, we will be able to see if the immune system is now free to make this type of response."

Haynes and colleagues built upon a growing body of recent research that has illuminated how the HIV virus manages to thwart potential vaccine candidates, and how the immune system mounts what is ultimately a futile fight.

The targets of protective antibodies are vulnerable regions of the outer coat of the virus, also called the viral envelope. HIV protects these vulnerable envelope regions with multiple strategies that camouflage the sites.

Recent research, however, has demonstrated that the human immune system prefers not to target these vulnerable sites, but instead aims at the outer coat sites that do not result in the production of protective antibodies.

Fostering the preferred broadly neutralizing antibodies has not been a simple matter, because they tend to have unusual features that make them targets for elimination by the body's own immune system. Instead, other, less effective antibodies against HIV dominate and in some instances crowd out the desired broad neutralizing antibodies.

In the most recent study, the researchers found a way to approach those challenges. They built a glyocopeptide - an artificial protein synthesized by organic chemistry with sugars attached - that is structured so that it readily binds to the broadly neutralizing antibodies rather than the more dominant antibodies. That quality is important for allowing the preferred antibodies to have a chance to develop.

The newly synthesized glycopeptide also attaches to the original ancestors of the broadly neutralizing antibodies, with the potential to trigger the receptors on naïve B cells of the neutralizing antibodies. B cells are white blood cells that make antibodies. The researchers believe this feature may be critical for a vaccine to induce antibodies that neutralize the HIV virus.

"It's by presenting the correct target for a neutralizing antibody, yet masking the dominant undesired target, that a vaccine can provide a fair chance for neutralizing antibodies to develop," said lead author S. Munir Alam, Ph.D., professor of medicine and pathology at Duke. "As in the case of our designed glycopeptide, if we start with a vaccine, to which not only the broadly neutralizing antibodies bind well, but also the receptors on naïve B cells, we hope to optimize the chance that the induced antibodies will go down the right path."

Alam said additional studies are ongoing, including efforts to create a crystal structure of the glycopeptide bound to the neutralizing antibody, and to begin testing the glycopeptide in animal models.

In addition to Haynes and Alam, study authors from Duke include S. Moses Dennison, Shelley Stewart, Frederick H. Jaeger, Kara Anasti, Julie H. Blinn, Mattia Bonsigniori, and Hua-Xin Liao. Authors from Sloan-Kettering include Danishefsky, Baptiste Aussedat, Yusuf Vohra, Peter K. Park, and Alberto Fernández-Tejada. Authors from Boston University and Harvard are Thomas B. Kepler and Joseph G. Sodroski, respectively.

The study was funded with grants from the National Institute of Allergy and Infectious Diseases (AI0678501) (UM1-AI100645) and the Bill & Melinda Gates Foundation.

Sarah Avery | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>