Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New artificial protein mimics a part of the HIV outer coat

23.10.2013
A team of scientists at Duke Medicine and Memorial Sloan-Kettering Cancer Center has created an artificial protein coupled with a sugar molecule that mimics a key site on the outer coat of HIV where antibodies can bind to neutralize a wide variety of HIV strains.

Reported during the week of Oct. 21, 2013, in the journal Proceedings of the National Academy of Sciences, the finding provides a potential new strategy in vaccine development to elicit the broadly neutralizing antibodies considered essential for long-lasting protection from the ever-changing HIV virus.

The new protein was designed by Duke and Harvard University scientists and made by Samuel Danishefsky, Ph.D., and his team at Memorial Sloan Kettering Cancer Center in New York.

"This new protein will allow the testing of a major hypothesis for why broadly neutralizing antibodies are so difficult to produce -- that of competition between desired and undesired antibody responses," said senior author Barton F. Haynes, M.D., director of the Duke Human Vaccine Institute. "By immunizing with a vaccine that primarily has the desired target for the immune system, we will be able to see if the immune system is now free to make this type of response."

Haynes and colleagues built upon a growing body of recent research that has illuminated how the HIV virus manages to thwart potential vaccine candidates, and how the immune system mounts what is ultimately a futile fight.

The targets of protective antibodies are vulnerable regions of the outer coat of the virus, also called the viral envelope. HIV protects these vulnerable envelope regions with multiple strategies that camouflage the sites.

Recent research, however, has demonstrated that the human immune system prefers not to target these vulnerable sites, but instead aims at the outer coat sites that do not result in the production of protective antibodies.

Fostering the preferred broadly neutralizing antibodies has not been a simple matter, because they tend to have unusual features that make them targets for elimination by the body's own immune system. Instead, other, less effective antibodies against HIV dominate and in some instances crowd out the desired broad neutralizing antibodies.

In the most recent study, the researchers found a way to approach those challenges. They built a glyocopeptide - an artificial protein synthesized by organic chemistry with sugars attached - that is structured so that it readily binds to the broadly neutralizing antibodies rather than the more dominant antibodies. That quality is important for allowing the preferred antibodies to have a chance to develop.

The newly synthesized glycopeptide also attaches to the original ancestors of the broadly neutralizing antibodies, with the potential to trigger the receptors on naïve B cells of the neutralizing antibodies. B cells are white blood cells that make antibodies. The researchers believe this feature may be critical for a vaccine to induce antibodies that neutralize the HIV virus.

"It's by presenting the correct target for a neutralizing antibody, yet masking the dominant undesired target, that a vaccine can provide a fair chance for neutralizing antibodies to develop," said lead author S. Munir Alam, Ph.D., professor of medicine and pathology at Duke. "As in the case of our designed glycopeptide, if we start with a vaccine, to which not only the broadly neutralizing antibodies bind well, but also the receptors on naïve B cells, we hope to optimize the chance that the induced antibodies will go down the right path."

Alam said additional studies are ongoing, including efforts to create a crystal structure of the glycopeptide bound to the neutralizing antibody, and to begin testing the glycopeptide in animal models.

In addition to Haynes and Alam, study authors from Duke include S. Moses Dennison, Shelley Stewart, Frederick H. Jaeger, Kara Anasti, Julie H. Blinn, Mattia Bonsigniori, and Hua-Xin Liao. Authors from Sloan-Kettering include Danishefsky, Baptiste Aussedat, Yusuf Vohra, Peter K. Park, and Alberto Fernández-Tejada. Authors from Boston University and Harvard are Thomas B. Kepler and Joseph G. Sodroski, respectively.

The study was funded with grants from the National Institute of Allergy and Infectious Diseases (AI0678501) (UM1-AI100645) and the Bill & Melinda Gates Foundation.

Sarah Avery | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht 'Y' a protein unicorn might matter in glaucoma
23.10.2017 | Georgia Institute of Technology

nachricht Microfluidics probe 'cholesterol' of the oil industry
23.10.2017 | Rice University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Microfluidics probe 'cholesterol' of the oil industry

23.10.2017 | Life Sciences

Gamma rays will reach beyond the limits of light

23.10.2017 | Physics and Astronomy

The end of pneumonia? New vaccine offers hope

23.10.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>