Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Artificial meadows and robot spiders reveal secret life of bees

Many animals learn to avoid being eaten by predators. Now ecologists have discovered that bumblebees can even learn to outwit colour-changing crab spiders.

Dr Tom Ings of Queen Mary, University of London will tell the British Ecological Society's Annual Meeting at Imperial College, London about how he and his colleague Professor Lars Chittka reached this conclusion using an artificial meadow containing robotic crab spiders.

The ongoing battle between predators and prey has fascinated ecologists for decades, and Ings is no exception. But instead of studying iconic predators such as lions or tigers, his interests lie closer to home with bumblebees and crab spiders.

According to Ings: “Crab spiders try to ambush unsuspecting flower visitors, such as bumblebees, by changing their body colour to match the flower they are lurking on. Even so, these spiders often fail to catch their prey, giving bees the chance to learn to avoid further - potentially fatal - encounters. We already know that animals, including bees, can learn to avoid predators, but we know almost nothing about how they do it. For example, do bees learn to avoid the location where they were attacked or the flower type on which they were attacked?”

To test how bumblebees learn to avoid predators such as crab spiders, Ings let them forage in a “meadow” of artificial flowers and exposed the bees to a controlled predation threat from “robotic” crab spiders. These robotic spiders, which consisted of a life-sized crab spider model and two remote-controlled, foam-coated pinchers, would capture and hold bees as they landed to feed. The meadow contained a mixture of yellow and white flowers with robotic spiders present on 25% of the yellow flowers in order to test whether bees' colour preference would switch from yellow to white after being attacked on yellow flowers.

“We found bees learnt to avoid flowers that look the same as those where they had previously been attacked. More importantly, after a few attacks bees started to avoid flowers of the same colour as those where they had previously been attacked, even if there were no spiders,” Ings says.

As well as revealing fascinating insights into how bumblebees learn to avoid becoming a crab spider’s dinner, Ings’ results have important implications for pollination and raise interesting questions about evolution of predator camouflage.

“Many flowers rely on insects such as bees for pollination. So our finding that bees avoid flowers of the same colour as those where they were previously attacked could mean these flowers are less likely to be pollinated. Our results also raise interesting questions about evolution of predator camouflage. Spiders use up energy changing colour, which can take several days. So why do they waste energy camouflaging themselves if it does not increase their chances of capturing prey? It might be that camouflage reduces the chances of crab spiders being eaten by their own predators such as birds, but this idea still needs to be tested experimentally,” says Ings.

Dr Ings will present his full findings at 12:20 on Wednesday 3 September 2008 to the British Ecological Society’s Annual Meeting at Imperial College, London.

Becky Allen | alfa
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>