Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial liver for drug tests

29.06.2009
If you have hay fever, headaches or a cold, it's only a short way to the nearest chemist. The drugs, on the other hand, can take eight to ten years to develop.

Until now animal experiments have been an essential step, yet they continue to raise ethical issues. "Our artificial organ systems are aimed at offering an alternative to animal experiments," says Professor Heike Mertsching of the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart.

"Particularly as humans and animals have different metabolisms. 30 per cent of all side effects come to light in clinical trials." The test system, which Professor Mertsching has developed jointly with Dr. Johanna Schanz, should in future give pharmaceutical companies greater security and shorten the path to new drugs. Both researchers received the "Human-centered Technology" prize for their work.

"The special feature, in our liver model for example, is a functioning system of blood vessels," says Dr. Schanz. "This creates a natural environment for cells." Traditional models do not have this, and the cells become inactive. "We don't build artificial blood vessels for this, but use existing ones – from a piece of pig's intestine." All of the pig cells are removed, but the blood vessels are preserved. Human cells are then seeded onto this structure – hepatocytes, which, as in the body, are responsible for transforming and breaking down drugs, and endothelial cells, which act as a barrier between blood and tissue cells. In order to simulate blood and circulation, the researchers put the model into a computer-controlled bioreactor with flexible tube pump, developed by the IGB. This enables the nutrient solution to be fed in and carried away in the same way as in veins and arteries in humans.

"The cells were active for up to three weeks," says Dr. Schanz. "This time was sufficient to analyze and evaluate the functions. A longer period of activity is possible, however." The researchers established that the cells work in a similar way to those in the body. They detoxify, break down drugs and build up proteins.

These are important pre-conditions for drug tests or transplants, as the effect of a substance can change when transformed or broken down – many drugs are only metabolized into their therapeutic active form in the liver, while others can develop poisonous substances. The researchers have demonstrated the basic possibilities for use of the tissue models – liver, skin, intestine and windpipe. At the moment, the test system is being examined. Within two years it could provide a safer alternative to animal experiments.

Heike Mertsching | EurekAlert!
Further information:
http://www.igb.fraunhofer.de

Further reports about: Artificial pump IGB blood vessel endothelial cell hepatocytes windpipe

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>