Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial liver for drug tests

29.06.2009
If you have hay fever, headaches or a cold, it's only a short way to the nearest chemist. The drugs, on the other hand, can take eight to ten years to develop.

Until now animal experiments have been an essential step, yet they continue to raise ethical issues. "Our artificial organ systems are aimed at offering an alternative to animal experiments," says Professor Heike Mertsching of the Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB in Stuttgart.

"Particularly as humans and animals have different metabolisms. 30 per cent of all side effects come to light in clinical trials." The test system, which Professor Mertsching has developed jointly with Dr. Johanna Schanz, should in future give pharmaceutical companies greater security and shorten the path to new drugs. Both researchers received the "Human-centered Technology" prize for their work.

"The special feature, in our liver model for example, is a functioning system of blood vessels," says Dr. Schanz. "This creates a natural environment for cells." Traditional models do not have this, and the cells become inactive. "We don't build artificial blood vessels for this, but use existing ones – from a piece of pig's intestine." All of the pig cells are removed, but the blood vessels are preserved. Human cells are then seeded onto this structure – hepatocytes, which, as in the body, are responsible for transforming and breaking down drugs, and endothelial cells, which act as a barrier between blood and tissue cells. In order to simulate blood and circulation, the researchers put the model into a computer-controlled bioreactor with flexible tube pump, developed by the IGB. This enables the nutrient solution to be fed in and carried away in the same way as in veins and arteries in humans.

"The cells were active for up to three weeks," says Dr. Schanz. "This time was sufficient to analyze and evaluate the functions. A longer period of activity is possible, however." The researchers established that the cells work in a similar way to those in the body. They detoxify, break down drugs and build up proteins.

These are important pre-conditions for drug tests or transplants, as the effect of a substance can change when transformed or broken down – many drugs are only metabolized into their therapeutic active form in the liver, while others can develop poisonous substances. The researchers have demonstrated the basic possibilities for use of the tissue models – liver, skin, intestine and windpipe. At the moment, the test system is being examined. Within two years it could provide a safer alternative to animal experiments.

Heike Mertsching | EurekAlert!
Further information:
http://www.igb.fraunhofer.de

Further reports about: Artificial pump IGB blood vessel endothelial cell hepatocytes windpipe

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>