Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial intelligence helps detect subtle differences in mutant worms

20.08.2012
Automated worm sorter

Research into the genetic factors behind certain disease mechanisms, illness progression and response to new drugs is frequently carried out using tiny multi-cellular animals such as nematodes, fruit flies or zebra fish.

Often, progress relies on the microscopic visual examination of many individual animals to detect mutants worthy of further study.

Now, scientists have demonstrated an automated system that uses artificial intelligence and cutting-edge image processing to rapidly examine large numbers of individual Caenorhabditis elegans, a species of nematode widely used in biological research. Beyond replacing existing manual examination steps using microfluidics and automated hardware, the system's ability to detect subtle differences from worm-to-worm – without human intervention – can identify genetic mutations that might not have been detected otherwise.

By allowing thousands of worms to be examined autonomously in a fraction of the time required for conventional manual screening, the technique could change the way that high throughput genetic screening is carried out using C. elegans.

Details of the research were scheduled to be reported August 19th in the advance online publication of the journal Nature Methods. The research has been supported by the National Institutes of Health (NIH), the National Science Foundation (NSF) and the Alfred P. Sloan Foundation.

"While humans are very good at pattern recognition, computers are much better than humans at detecting subtle differences, such as small changes in the location of dots or slight variations in the brightness of an image," said Hang Lu, the project's lead researcher and an associate professor in the School of Chemical & Biomolecular Engineering at the Georgia Institute of Technology. "This technique found differences that would have been almost impossible to pick out by hand."

Lu's research team is studying genes that affect the formation and development of synapses in the worms, work that could have implications for understanding human brain development. The researchers use a model in which synapses of specific neurons are labeled by a fluorescent protein. Their research involves creating mutations in the genomes of thousands of worms and examining the resulting changes in the synapses. Mutant worms identified in this way are studied further to help understand what genes may have caused the changes in the synapses.

One aspect the researchers are studying is why synapses form in the wrong locations, or are of the wrong sizes or types. The differences between the mutants and the normal or "wild type" worms indicate inappropriate developmental patterns caused by the genetic mutations.

Because of the large number of possible genes involved in these developmental processes, the researchers must examine thousands of worms – perhaps as many as 100,000 – to exhaust the search. Lu and her research group had earlier developed a microfluidic "worm sorter" that speeds up the process of examining worms under a microscope, but until now, there were two options for detecting the mutants: a human had to look at each animal, or a simple heuristic algorithm was used to make the sorting decision. Neither option is objective or adaptable to new problems.

Lu's system, an optimized version of earlier work by her group, uses a camera to record three-dimensional images of each worm as it passes through the sorter. The system compares each image set against what it has been taught the "wild type" worms should look like. Worms that are even subtly different from normal can be sorted out for further study.

"We feed the program wild-type images, and it teaches itself to recognize what differentiates the wild type. It uses this information to determine what a mutant type may look like – which is information we didn't provide to the system – and sorts the worms based on that," explained Matthew Crane, a graduate student who performed the work. "We don't have to show the computer every possible mutant, and that is very powerful. And the computer never gets bored."

While the system was designed to sort C. elegans for a specific research project, Lu believes the machine learning technology – which is borrowed from computer science – could be applied to other areas of biology that use model genetic organisms. The system's hardware and software are currently being used in several other laboratories beyond Georgia Tech.

"Our automated technique can be generalized to anything that relies on detecting a morphometric – or shape, size or brightness difference," Lu said. "We can apply this to anything that can be detected visually, and we think this could be expanded to studying many other problems related to learning, memory, neuro-degeneration and neural developmental diseases that this worm can be used to model."

Individual C. elegans are less than a millimeter long and thinner than a strand of hair, but have 302 neurons with well-defined synapses. While research using single cells can be simpler to do, studies using the worms are good in vivo models for many important processes relevant to human health.

Other researchers who contributed to this paper include student Jeffrey Stirman from Georgia Tech's interdisciplinary program in bioengineering, Professor James Rehg from Georgia Tech's School of Interactive Computing, and three researchers from the Department of Biology at Stanford University's Howard Hughes Medical Institute: Chan-Yen Ou, Peri Kurshan, and Professor Kang Shen.

The autonomous processing facilitated by the new system could allow researchers to examine more animals more rapidly, potentially opening up areas of study that are not feasible today.

"We are hoping that the technology will really change the approach people can take to this kind of research," said Lu. "We expect that this approach will enable people to do much larger scale experiments that can push the science forward beyond looking what individual mutations are doing in a specific situation."

The project described was supported by Award Numbers R01GM088333, R21EB012803 and R01AG035317 from the National Institutes of Health. This material is also based on work supported by the National Science Foundation under Grant No. CAREER CBET-0954578. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National lnstitutes of Health or the National Science Foundation.

Citation: Matthew M Crane, Jeffrey N Stirman, Chan-Yen Ou, Peri T Kurshan, James M Rehg, Kang Shen & Hang Lu, Autonomous screening of C. elegans identifies genes implicated in synaptogenesis, DOI: 10.1038/NMETH.2141

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>