Artificial intelligence for obtaining chemical fingerprints

The scientists have found a way to accelerate chemical simulations using artificial intelligence. Copyright: Philipp Marquetand

Drastic advances in research of artificial intelligence have led to a wide range of fascinating developments in this area over the last decade. Autonomously driven cars, but also everyday applications such as search engines and spam filters illustrate the versatility of methods from the field of artificial intelligence.

Infrared spectroscopy is one of the most valuable experimental methods to gain insight into the world of molecules. Infrared spectra are chemical fingerprints that provide information on the composition and properties of substances and materials.

In many cases, these spectra are very complex – a detailed analysis makes computer-aided simulations indispensable. While quantum chemical calculations in principle enable extremely precise prediction of infrared spectra, their applicability in practice is made difficult by the high computational effort associated with them. For this reason, reliable infrared spectra can only be calculated for relatively small chemical systems.

An international group of researchers led by Philipp Marquetand from the Faculty of Chemistry at the University of Vienna has now found a way to accelerate these simulations using artificial intelligence. For this purpose, so-called artificial neural networks are used, mathematical models of the human brain. These are able to learn the complex quantum mechanical relationships that are necessary for the modelling of infrared spectra by using only a few examples.

In this way, the scientists can carry out simulations within a few minutes, which would otherwise take thousands of years even with modern supercomputers – without sacrificing reliability. “We can now finally simulate chemical problems that could not be overcome with the simulation techniques used up to now,” says Michael Gastegger, the first author of the study.

Based on the results of this study, the researchers are confident that their method of spectra prediction will be widely used in the analysis of experimental infrared spectra in the future.

###

Publication in Chemical Science

Machine learning molecular dynamics for the simulation of infrared spectra
Michael Gastegger, Jörg Behler, Philipp Marquetand
Chemical Science, 2017, DOI: 10.1039/C7SC02267K

Media Contact

Philipp Marquetand
philipp.marquetand@univie.ac.at
43-142-775-2764

 @univienna

http://www.univie.ac.at/en/ 

Media Contact

Philipp Marquetand EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Silicon Carbide Innovation Alliance to drive industrial-scale semiconductor work

Known for its ability to withstand extreme environments and high voltages, silicon carbide (SiC) is a semiconducting material made up of silicon and carbon atoms arranged into crystals that is…

New SPECT/CT technique shows impressive biomarker identification

…offers increased access for prostate cancer patients. A novel SPECT/CT acquisition method can accurately detect radiopharmaceutical biodistribution in a convenient manner for prostate cancer patients, opening the door for more…

How 3D printers can give robots a soft touch

Soft skin coverings and touch sensors have emerged as a promising feature for robots that are both safer and more intuitive for human interaction, but they are expensive and difficult…

Partners & Sponsors