Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New artificial enzyme safer for nature

23.10.2009
Breakthrough for manmade enzymes

Custom built enzyme to replace harsh and hazardous chemicals

Perilous and polluting industrial processes can be made safer with enzymes. But only a short range of enzymes have been available for the chemical industry.

Recently a group of researchers at The Department of Chemistry at University of Copenhagen succeeded in producing an artificial enzyme that points the way to enzymes tailor-made for any application.

With their group leader, Professor Mikael Bols, Ph.d. students Jeanette Bjerre and Thomas Hauch Fenger are publishing details of their breakthrough in recognized international ChemBioChem (15/2009) under the title “Cyclodextrin Aldehydes are Oxidase Mimics”

Artificial enzymes for unnatural tasks
An enzyme unlike any seen in nature, this new one distinguishes itself in three ways. Its effect is powerful. It’s easy to produce. And the researchers from the Copenhagen labs are the first to fashion an enzyme that is capable of speeding up oxidizing processes. With the simple and cheap compound Hydrogen Peroxide no less.

Oxidizing processes are considered one of the cornerstones of all chemical production. From paint to pharmaceuticals. But traditional oxidizers have a reputation for being dangerously unrefined. That’s why enzymes are desirable and tailor made ones doubly so. For one thing they can be designed to be unbelievably specific. But even more important is their ability to operate under humane conditions, unlike their traditional chemical counterparts, which often need high temperatures, extreme pressure and corrosive surroundings.

New tool in the box
Until recently enzymes were exclusively found in micro organisms in the wild. But the challenges faced by microbes and chemical corporations are hardly comparable. So industries have been short on eco friendly alternatives to chemicals. The new artificial enzyme from Copenhagen adds a whole new class of tools to the toolbox of the chemists. And it’s fast. Though not yet fast enough.
Natural enzymes typically speed up reactions by as much as 1 million times. The new enzyme from the Bols-group will speed up reactions by no more than 10.000 times. But that’s not to be sneezed at says professor Mikael Bols.
“We have been developing these substances since year 2000. When we succeeded with the first enzyme, it’s reaction speed was only multiplied by 25, so I think it’s fair to speak of a breakthrough here”, says the professor.

As the new enzymes inch closer to the natural reaction-times, they they are bound to become increasingly important for sensitive processes like those of the pharmaceutical industry.

Jes Andersen | EurekAlert!
Further information:
http://www.ku.dk

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>