Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Artificial enzyme removes natural poison

27.08.2010
First example of Chemzyme functioning as antidote

For the first time ever, a completely man-made chemical enzyme has been successfully used to neutralise a toxin found naturally in fruits and vegetables.

Proof of concept for artificial enzymes

Chemzymes are designed molecules emulating the targeting and efficiency of naturally occurring enzymes and the recently graduated Dr. Bjerre is pleased about her results.

"Showing that these molecules are capable of decomposing toxins required vast amounts of work and time. But it's been worth every minute because it proves the general point that it's possible to design artificial enzymes for this class of task", explains Bjerre.

Simple molecules performing complex tasks

Most people know enzymes as an ingredient in detergents. In our bodies enzymes are in charge of decomposing everything we eat, so that our bodies can absorb the nutrients. But they also decompose ingested toxins, ensuring that our bodies survive the encounter.

In several important aspects artificial enzymes function in the same way as naturally occurring ones. But where natural enzymes are big and complex, the artificial ones have been pared down to the basics.

The flat-nosed plier of the molecular world

One consequence of this simplicity is that designing chemzymes for targeted tasks ought to be easier. With fewer parts, there's less to go wrong when changing the structure of chemzymes. And for enzymes as well as for their artificial counterparts even small changes in structure will have massive consequences for functionality.

In this, enzymes are very much like hand-tools, where scissors and flat nosed pliers, though almost identical, have very different duties.

Hardwearing replacement enzymes

Even though naturally occurring enzymes are several orders of magnitude smaller than flat-nosed pliers, they are still unrivalled tools. Some of the fastest chemical reactions blast off when enzymes are added to the broth.

Several known enzymes in the body catalyze more than one million reactions per second when they decompose compounds. There's just one drawback to enzymes. They are extremely fragile.

If an enzyme in our body was to be warmed above sixtyfive degrees centigrade or subjected to organic solvents, they would immediately denature. They would unravel and stop functioning.

Taking the heat

So far no one has succeeded in designing chemzymes that are anywhere near as fast as their naturally occurring cousins. But they are far more resilient.

Manmade enzymes take on heat and solvents without batting a molecular eyelid. One of the consequences of this is that chemzymes can be mass-produced using industrial chemical processes. This is a huge advantage when you need a lot of product in a hurry.

Factory-made enzymes

Producing natural enzymes in industrial settings is considerably more time-consuming because they have to be grown. Rather like one grows apples or grain.

So the robust and designable compounds may turn out to be just what's needed for a wide variety of jobs. Not least in the pharmaceutical industries, where the need is massive for chemical compounds which can solve problems that no amount of designing could ever tweak the natural ones to work on, which are unaffected by industrial processes, and to top it of, cheap to produce.

Jes Andersen | EurekAlert!
Further information:
http://www.ku.dk

More articles from Life Sciences:

nachricht First-of-its-kind chemical oscillator offers new level of molecular control
15.12.2017 | University of Texas at Austin

nachricht New technique could make captured carbon more valuable
15.12.2017 | DOE/Idaho National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>