Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Artificial Blood Maker: EPO

First successful total synthesis of Erythropoietin

“Blood is quite a peculiar kind of juice“—that is what Mephisto knew, according to Goethe’s “Faust“. But if blood really is very special, then erythropoietin (EPO) must be a very special molecule, as it triggers the production of our red blood cells.

After ten years of intense research, American scientists have now succeeded in making a fully synthetic version of this special molecule. This achievement represents a landmark advance in the chemical synthesis of complex biological molecules from basic building blocks.

EPO is a hormone produced in the kidneys that induces the differentiation of bone marrow stem cells to erythrocytes (red blood cells). Upon sensing decreased oxygen in circulation, EPO is secreted to boost the production of red blood cells. EPO has found many therapeutic applications. Dialysis patients, whose haematosis is affected by renal failure, are treated with EPO and the drug is also given to cancer patients who have undergone chemotherapy or radiation therapy. Black sheep among racing cyclists, and other athletes, have abused EPO in an effort to improve their athletic performance.

Until now, only nature itself was able to synthesize EPO. For therapeutic use, the drug has to be produced biotechnologically in cell cultures. In a major breakthrough, a team led by Samuel J. Danishefsky at the Sloan-Kettering Institute for Cancer Research in New York has now produced a fully synthetic EPO by total synthesis in their lab. Because classical methods of protein synthesis were insufficient to build up this complex biomolecule, the scientists had to develop sophisticated new synthesis strategies to attain their objective.

EPO is not actually one compound but a large family of molecules. Known as glycoproteins, the structures are composed of a protein decorated with four carbohydrate sectors. The protein portion is always the same, as are the locations at which the carbohydrate domains are attached. Yet, in endogenous EPO protein, there are a wide variety of different carbohydrate sectors that may be appended to the protein. It has not been possible to access naturally occurring EPO as a homogeneous, pure molecule. By adopting the tools of chemical synthesis, the investigators were able to make, for the first time, pure “wild type” EPO glycoprotein incorporating the natural amino acid sequence and four carbohydrate sectors of strictly defined structure.

Extension of this strategy will enable scientists to make numerous versions of the molecule and to study how differences in the chemical structure of the carbohydrate domains may affect how the glycoprotein induces the production of red blood cells.

The structure of the synthetic EPO was verified by mass spectrometry. Tests using stem cells proved the effectiveness of the synthesized EPO: like its natural counterpart, the synthetic EPO triggered the formation of red blood cells from stem cells.

About the Author
Dr. Samuel Danishefsky is Centenary Professor of Chemistry at Columbia University and the Eugene Kettering Chair and Head of the Laboratory for Bioorganic Chemistry at the Sloan-Kettering Institute for Cancer Research in New York City. He is a member of the American Academy of Arts and Sciences and the National Academy of the Sciences and is a recipient of the Wolf Prize in Chemistry (with Prof. Gilbert Stork), the Franklin Medal in Chemistry, the Bristol Myers Squibb Lifetime Achievement Award in Chemistry, and the National Academy of Sciences Award in the Chemical Sciences. His research interests include the chemical synthesis of challenging small molecule and biologics-based compounds of therapeutic import.
Author: Samuel J. Danishefsky, Sloan-Kettering Institute for Cancer Research, New York (USA),
Title: At Last: Erythropoietin as a Single Glycoform
Angewandte Chemie International Edition, Permalink to the article:

Samuel J. Danishefsky | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht Tissue-engineered colon from human cells develop different types of neurons
02.10.2015 | Children's Hospital Los Angeles

nachricht Big eyes! – MDC Researchers Identify Cause of Inherited Form of Extreme Nearsightedness
02.10.2015 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Sinumerik features improve productivity and precision

EMO 2015, Hall 3, Booth E06/F03

  • Drive optimization called automatically by the part program boosts productivity
  • Automatically switching the dynamic values to rapid traverse and interpolation...

Im Focus: LZH presents additive manufacturing at the LABVOLUTION

The Laser Zentrum Hannover e.V. (LZH) will present how laser-based technologies can contribute to the laboratory of the future at the LABVOLUTION in Hannover in Hall 9, Stand E67/09, from October 6th to 8th, 2015. As a part of the model lab smartLAB, the LZH is showing how additive manufacturing, better known as 3-D printing, can make experimental setups more flexible.

Twelve partners from science and industry are presenting an intelligent and innovative model lab at the special display smartLAB. A part of this intelligent...

Im Focus: New polymer creates safer fuels

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact.

Researchers at Caltech and JPL have discovered a polymeric fuel additive that can reduce the intensity of postimpact explosions that occur during accidents and...

Im Focus: 3-D printing techniques help surgeons carve new ears

When surgical residents need to practice a complicated procedure to fashion a new ear for children without one, they typically get a bar of soap, carrot or an apple.

To treat children with a missing or under-developed ear, experienced surgeons harvest pieces of rib cartilage from the child and carve them into the framework...

Im Focus: Walk the line

NASA studies physical performance after spaceflight

Walking an obstacle course on Earth is relatively easy. Walking an obstacle course on Earth after being in space for six months is not quite as simple. The...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Infrared thermography can detect joint inflammation and help improving work ergonomics

02.10.2015 | Medical Engineering

Semiconductor nanoparticles show high luminescence in a polymer matrix

02.10.2015 | Materials Sciences

New Sinumerik features improve productivity and precision

02.10.2015 | Trade Fair News

More VideoLinks >>>