Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Art Seals Reveal Their Secrets

Imaging mass spectrometry for analyzing art works

Works of art are valuable and often also very delicate. Their restoration and conservation and their dating and authentication require sophisticated technical methods. A team led by Sichun Zhang at Tsinghua University in Beijing has now developed a new imaging mass spectrometric process to identify paintings and calligraphy without damaging the art pieces. As the scientists report in the journal Angewandte Chemie, the secret to the success of this method is a low-temperature plasma probe that gently removes molecules from the surface of the art works.

In mass spectrometry (MS), the substance to be examined is brought into the gas phase and ionized (electrically charged); the ionized particles are then accelerated through by an electric field. Within the analyzer, the particle beam is separated according to the mass and charge of the particles. Imaging mass spectrometric techniques have now also been developed. In this process, the surface of a sample must be scanned and a mass spectrum obtained at every pixel. This technique requires special ionization methods that allow the samples to be examined directly. However, most of the existing imaging mass spectrometric techniques work under vacuum conditions, which limits the size of the samples to be analyzed. In the electrospray technique, solvent molecules carry analyte molecules away from the surface and ionize them.

Delicate works of art such as paintings can however be contaminated and thus damaged by the solvents. The Chinese researchers have now introduced a new variety of imaging MS that operates with a low-temperature plasma probe. This probe essentially consists of a fused capillary and two electrodes made of aluminum foil, to which a very strong alternating voltage is applied. Inside the capillary there is helium gas; the high electric voltage induces what is known as a dielectric barrier discharge in the helium. This means that the helium atoms are in the form of separated ions, electrons, and exited atoms, a state known as a plasma. The temperature of this plasma reaches only 30 °C. The helium plasma leaving the capillary ejects molecules from the surface of the sample and ionizes them. This does not damage valuable works of art.

The scientists used this new technique to analyze seals, which are stamped impressions used as signatures and means of authentication on Chinese paintings and calligraphy. The team was able to use their new microplasma probe to reveal variations in the composition of the ink of individual seals, making it possible to differentiate between authentic and inauthentic seals.

Please note our event "Frontiers of Chemistry" on May 21 in Paris with four Nobel laureates and six other renowned speakers. It will be broadcast live on the internet at

Author: Sichun Zhang, Tsinghua University, Beijing (China),

Title: Imaging Mass Spectrometry with a Low-Temperature Plasma Probe for the Analysis of Works of Art

Angewandte Chemie International Edition, Permalink to the article:

Sichun Zhang | Angewandte Chemie
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>