Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Art Seals Reveal Their Secrets

19.05.2010
Imaging mass spectrometry for analyzing art works

Works of art are valuable and often also very delicate. Their restoration and conservation and their dating and authentication require sophisticated technical methods. A team led by Sichun Zhang at Tsinghua University in Beijing has now developed a new imaging mass spectrometric process to identify paintings and calligraphy without damaging the art pieces. As the scientists report in the journal Angewandte Chemie, the secret to the success of this method is a low-temperature plasma probe that gently removes molecules from the surface of the art works.

In mass spectrometry (MS), the substance to be examined is brought into the gas phase and ionized (electrically charged); the ionized particles are then accelerated through by an electric field. Within the analyzer, the particle beam is separated according to the mass and charge of the particles. Imaging mass spectrometric techniques have now also been developed. In this process, the surface of a sample must be scanned and a mass spectrum obtained at every pixel. This technique requires special ionization methods that allow the samples to be examined directly. However, most of the existing imaging mass spectrometric techniques work under vacuum conditions, which limits the size of the samples to be analyzed. In the electrospray technique, solvent molecules carry analyte molecules away from the surface and ionize them.

Delicate works of art such as paintings can however be contaminated and thus damaged by the solvents. The Chinese researchers have now introduced a new variety of imaging MS that operates with a low-temperature plasma probe. This probe essentially consists of a fused capillary and two electrodes made of aluminum foil, to which a very strong alternating voltage is applied. Inside the capillary there is helium gas; the high electric voltage induces what is known as a dielectric barrier discharge in the helium. This means that the helium atoms are in the form of separated ions, electrons, and exited atoms, a state known as a plasma. The temperature of this plasma reaches only 30 °C. The helium plasma leaving the capillary ejects molecules from the surface of the sample and ionizes them. This does not damage valuable works of art.

The scientists used this new technique to analyze seals, which are stamped impressions used as signatures and means of authentication on Chinese paintings and calligraphy. The team was able to use their new microplasma probe to reveal variations in the composition of the ink of individual seals, making it possible to differentiate between authentic and inauthentic seals.

Please note our event "Frontiers of Chemistry" on May 21 in Paris with four Nobel laureates and six other renowned speakers. It will be broadcast live on the internet at chemistryviews.org.

Author: Sichun Zhang, Tsinghua University, Beijing (China), http://chem.tsinghua.edu.cn/zhangxr/xrzhang.htm

Title: Imaging Mass Spectrometry with a Low-Temperature Plasma Probe for the Analysis of Works of Art

Angewandte Chemie International Edition, Permalink to the article: http://dx.doi.org/10.1002/anie.200906975

Sichun Zhang | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://chem.tsinghua.edu.cn/zhangxr/xrzhang.htm

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>