Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why you should never arm wrestle a saber-toothed tiger

05.07.2010
X-ray analysis reveals that sabertooth forelimbs were exceptionally strong compared to their feline cousins

Saber-toothed cats may be best known for their supersized canines, but they also had exceptionally strong forelimbs for pinning prey before delivering the fatal bite, says a new study in the journal PLoS ONE.

Commonly called the "saber-toothed tiger," the extinct cat Smilodon fatalis roamed North and South America until 10,000 years ago, preying on large mammals such as bison, camels, mastodons and mammoths. Telltale clues from bones and teeth suggest they relied on their forelimbs as well as their fangs to catch and kill their prey.

The size and shape of sabertooth canines made them more vulnerable to fracture than cats living today, said author Julie Meachen-Samuels, a paleontologist at the National Evolutionary Synthesis Center in Durham, NC.

"Cats living today have canines that are round in cross-section, so they can withstand forces in all directions. If the prey is struggling it doesn't matter which way it's pulling — their teeth are unlikely to break," she explained.

In contrast, the elongated canines of saber-toothed cats were oval in cross-section, which made them more vulnerable to breaking than their conical-toothed cousins. "Many scientists infer that saber-toothed cats killed prey differently from other cats because their teeth were thinner side-to-side," said Meachen-Samuels.

Despite their vulnerable canines, prominent muscle attachment scars on sabertooth limb bones suggest the cat was powerfully built. Saber-toothed cats may have used their muscular arms to immobilize prey and protect their teeth from fracture, she explained.

To estimate how strong sabertooth forelimbs were relative to other cats, the researchers used x-rays to measure the cross-sectional dimensions of the upper arm and leg bones of fossils recovered from the La Brea Tar Pits in Los Angeles. They also measured the limb bones of 28 cat species living today — ranging in size from the 6-pound margay to the 600-pound tiger — as well as the extinct American lion, the largest conical-toothed cat that ever lived.

The researchers used their cross-sectional measurements to estimate bone strength and rigidity for each species. When they plotted rigidity against length for the 30 species in their study, species with longer limbs generally had stronger bones. But the data for the saber-toothed cat fell well outside the normal range —while their leg bones scaled to size, their arm bones were exceptionally thick for their length.

"When I looked at the arm bones, Smilodon fatalis was way out in left field," said Meachen-Samuels.

Sabertooth arm bones were not only larger in diameter than other cats, they also had thicker cortical bone, the dense outer layer that makes bones strong and stiff. Thicker cortical bone is consistent with the idea that sabertooth forelimbs were under greater stress than would be expected for cats their size, Meachen-Samuels explained. Just like weight-bearing exercise remodels our bones and improves bone density over time, the repeated strain of grappling with prey may have resulted in thicker and stronger arm bones in saber-toothed cats.

"As muscles pull on bones, bones respond by getting stronger," said Meachen-Samuels. "Because saber-toothed cats had thicker arm bones we think they must have used their forelimbs more than other cats did."

"The findings give us new information about how strong their forelimbs were and how they were built," she added. "This is the first study to look inside sabertooth arm bones to see exactly how much stress and strain they could handle."

The findings will be published online in the June 30 issue of PLoS ONE.

Blaire Van Valkenburgh of the University of California, Los Angeles was also an author on this study.

CITATION: Meachen-Samuels, J. and B. VanValkenburgh (2010). "Radiographs reveal exceptional forelimb strength in the saber-toothed cat, Smilodon fatalis." PLoS ONE.

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>