Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why you should never arm wrestle a saber-toothed tiger

05.07.2010
X-ray analysis reveals that sabertooth forelimbs were exceptionally strong compared to their feline cousins

Saber-toothed cats may be best known for their supersized canines, but they also had exceptionally strong forelimbs for pinning prey before delivering the fatal bite, says a new study in the journal PLoS ONE.

Commonly called the "saber-toothed tiger," the extinct cat Smilodon fatalis roamed North and South America until 10,000 years ago, preying on large mammals such as bison, camels, mastodons and mammoths. Telltale clues from bones and teeth suggest they relied on their forelimbs as well as their fangs to catch and kill their prey.

The size and shape of sabertooth canines made them more vulnerable to fracture than cats living today, said author Julie Meachen-Samuels, a paleontologist at the National Evolutionary Synthesis Center in Durham, NC.

"Cats living today have canines that are round in cross-section, so they can withstand forces in all directions. If the prey is struggling it doesn't matter which way it's pulling — their teeth are unlikely to break," she explained.

In contrast, the elongated canines of saber-toothed cats were oval in cross-section, which made them more vulnerable to breaking than their conical-toothed cousins. "Many scientists infer that saber-toothed cats killed prey differently from other cats because their teeth were thinner side-to-side," said Meachen-Samuels.

Despite their vulnerable canines, prominent muscle attachment scars on sabertooth limb bones suggest the cat was powerfully built. Saber-toothed cats may have used their muscular arms to immobilize prey and protect their teeth from fracture, she explained.

To estimate how strong sabertooth forelimbs were relative to other cats, the researchers used x-rays to measure the cross-sectional dimensions of the upper arm and leg bones of fossils recovered from the La Brea Tar Pits in Los Angeles. They also measured the limb bones of 28 cat species living today — ranging in size from the 6-pound margay to the 600-pound tiger — as well as the extinct American lion, the largest conical-toothed cat that ever lived.

The researchers used their cross-sectional measurements to estimate bone strength and rigidity for each species. When they plotted rigidity against length for the 30 species in their study, species with longer limbs generally had stronger bones. But the data for the saber-toothed cat fell well outside the normal range —while their leg bones scaled to size, their arm bones were exceptionally thick for their length.

"When I looked at the arm bones, Smilodon fatalis was way out in left field," said Meachen-Samuels.

Sabertooth arm bones were not only larger in diameter than other cats, they also had thicker cortical bone, the dense outer layer that makes bones strong and stiff. Thicker cortical bone is consistent with the idea that sabertooth forelimbs were under greater stress than would be expected for cats their size, Meachen-Samuels explained. Just like weight-bearing exercise remodels our bones and improves bone density over time, the repeated strain of grappling with prey may have resulted in thicker and stronger arm bones in saber-toothed cats.

"As muscles pull on bones, bones respond by getting stronger," said Meachen-Samuels. "Because saber-toothed cats had thicker arm bones we think they must have used their forelimbs more than other cats did."

"The findings give us new information about how strong their forelimbs were and how they were built," she added. "This is the first study to look inside sabertooth arm bones to see exactly how much stress and strain they could handle."

The findings will be published online in the June 30 issue of PLoS ONE.

Blaire Van Valkenburgh of the University of California, Los Angeles was also an author on this study.

CITATION: Meachen-Samuels, J. and B. VanValkenburgh (2010). "Radiographs reveal exceptional forelimb strength in the saber-toothed cat, Smilodon fatalis." PLoS ONE.

The National Evolutionary Synthesis Center (NESCent) is a nonprofit science center dedicated to cross-disciplinary research in evolution. Funded by the National Science Foundation, NESCent is jointly operated by Duke University, The University of North Carolina at Chapel Hill, and North Carolina State University. For more information about research and training opportunities at NESCent, visit www.nescent.org.

Robin Ann Smith | EurekAlert!
Further information:
http://www.nescent.org

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>