Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Argonautes: A big turn-off for proteins

02.02.2010
Johns Hopkins scientists believe they may have figured out how genetic snippets called microRNAs are able to shut down the production of some proteins.

The issue, they say, is important because the more scientists know about how genes — the blueprints for proteins — are regulated, the more likely they are to figure out how to use that information in treating or preventing diseases linked to such regulation, including cancer.

In both computer and test-tube studies using fruit-fly protein, the Johns Hopkins researchers intensively studied a fairly large protein called Argonaute because it is known to bind to microRNA and ultimately shut down protein production.

"The question was how it did it," says Rachel Green, Ph.D., a Howard Hughes Medical Institute investigator and professor of molecular biology and genetics in the Johns Hopkins University School of Medicine.

Previous studies have been inconclusive about the mechanism by which microRNAs bound to Argonautes prevent the production of protein from a given gene.

In this study, the team discovered that when an Argonaute binds to a microRNA, it then binds more tightly to a messenger RNA thereby sequestering the message from the translation machine known as the ribosome where protein production happens.

Their research appeared in January in Nature Structural & Molecular Biology.

The team set out to characterize Argonautes first using computers to compare their shapes and structures with other proteins. They found striking similarities between Argonaute structures and proteins that happened to exhibit a particular kind of "cooperative binding" known as allostery.

Allostery is a condition in which the binding of one molecule stimulates the binding of a second.

By chopping up Argonaute proteins from fruit flies and testing each piece individually, the team showed that allostery stimulated tenfold the binding of the Argonaute and miRNA complex to messenger RNA.

The scientists speculate that as a result of being bound, the messenger RNA was prevented from doing its job of delivering a gene's instructions to the ribosome that translates them and manufactures proteins. These studies provide new insights into Argonaute protein function, motivating the next series of questions in the field.

"MicroRNAs are all the rage," Green says. "Suddenly, in the last 10 years, there's this whole set of genes and cellular components that we had no idea existed, and they're ubiquitous. They play roles in all manner of development, and Argonautes are the main class of protein involved in regulating them."

The research was supported by funding from the Howard Hughes Medical Institute.

In addition to Green, Sergej Djuranovic, Michelle Kim Zinchenko, Junho K. Hur, Ali Nahvi, Julie L. Brunelle, and Elizabeth J. Rogers, all of Johns Hopkins, were authors of the paper.

On the Web:

http://www.mbg.jhmi.edu/people/profile.asp?PersonID=366
http://www.hhmi.org/research/investigators/greenr_bio.html
http://www.nature.com/nsmb/index.html

Maryalice Yakutchik | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>