Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Argonaute Proteins Intervene in the Gene Regulation Process

14.11.2013
Heidelberg scientists identify protein motifs that influence gene silencing

Bioscientists at Heidelberg University have studied the function of certain proteins, known as Argonaute (Ago) proteins, in the process of gene regulation. They sought to understand why only the Ago2 protein is able to target and directly turn off genes in humans, while the closely related Ago3 protein is not.


The puzzle symbolises the four principle domains from which human Argonaute proteins are built.
Pricture Credits: Dirk Grimm

Using a new investigative method, researchers working with Dr. Dirk Grimm were able to identify for the first time two "motifs" of this protein that, when properly combined with an already known protein domain, give Ago2 its gene-silencing capability. The researchers hope that the results will open up new avenues in basic biological and medical research toward artificially induced gene silencing.

With the aid of their special "directed protein evolution" method, the Heidelberg scientists were able to generate a large library of "hybrids" from human Ago2 and its close cousin Ago3. Individual proteins with the characteristics – the phenotype – of Ago2 were isolated from these chimaeras. A comparative bioinformatic analysis of the candidates with the strongest Ago2 phenotype yielded an "astonishing result", according to Dr. Grimm. The researchers from Heidelberg University's "CellNetworks" Cluster of Excellence observed a recurring accumulation of two short motifs in a special domain of the Argonaute protein, the N terminus at the end of the protein.

"This result was unexpected since the prevailing view holds that a completely different and known protein domain called the PIWI domain is solely responsible for the gene-regulating properties of Ago2," explains Dr. Grimm. "We were able to show, however, that only the correct combination of these three protein components gives Ago2 the ability to turn off genes in a special way." Gene silencing is based on what is known as RNA interference. Ago2, also called the slicer, slices the messenger RNA that transports the data stored in the DNA and translates it into proteins.

According to lead author Nina Schürmann, the results of this research provide new insight into Argonaute proteins. The results demonstrate that special Ago functions are not determined by isolated protein domains, but through the complex interaction of multiple activating or inhibiting domains. The researchers now hope that they will be able to generate completely new protein characteristics in future and, as a result, possibly even further improve RNA interference processes, according to Dr. Grimm. To advance the research further, the Heidelberg scientists generated a library of chimaeras of all four human Argonaute proteins as well as developed analysis software that can also benefit other users. In cooperation with Prof. Dr. Robert Russell and Dr. Leonardo Trabuco, likewise researchers in the "CellNetworks" Cluster of Excellence, a structure of human Ago3 could be modelled for the first time.

Dirk Grimm directs the CellNetworks "Virus-Host Interactions" Junior Research Group, which is located in the BioQuant Center of Heidelberg University. The group belongs to Heidelberg University Hospital‘s Department of Infectious Diseases under the direction of Prof. Dr. Hans-Georg Kräusslich and is supported by the Chica and Heinz Schaller Foundation (CHS). The results of the research were published in “Nature Structural & Molecular Biology”.

Online Information:
Dr. Dirk Grimm: http://www.cellnetworks.uni-hd.de/13843/personal_data
"CellNetworks" Cluster of Excellence: http://www.cellnetworks.uni-hd.de
BioQuant Center: http://www.bioquant.uni-heidelberg.de
Department of Infectious Diseases: http://www.klinikum.uni-heidelberg.de/UEberblick.1208.0.html
Original publication:
N. Schürmann, L.G. Trabuco, Ch. Bender, R.B. Russell & D. Grimm: Molecular dissection of human Argonaute proteins by DNA shuffling, Nature Structural & Molecular Biology 20, 818-826 (2013), doi: 10.1038/nsmb.2607
Contact:
Dr. Dirk Grimm
"CellNetworks" Cluster of Excellence
BioQuant Center
Phone: +49 6221 54-51339
dirk.grimm@bioquant.uni-heidelberg.de
Communications and Marketing
Press Office, phone: +49 6221 54-2311
presse@rektorat.uni-heidelberg.de

Marietta Fuhrmann-Koch | idw
Further information:
http://www.uni-heidelberg.de

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>