Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are you as old as what you eat? Researchers learn how to rejuvenate aging immune cells

25.08.2014

Researchers from UCL (University College London) have demonstrated how an interplay between nutrition, metabolism and immunity is involved in the process of ageing.

The two new studies, supported by the Biotechnology and Biological Sciences Research Council (BBSRC), could help to enhance our immunity to disease through dietary intervention and help make existing immune system therapies more effective.

As we age our immune systems decline. Older people suffer from increased incidence and severity of both infections and cancer. In addition, vaccination becomes less efficient with age.

In previous BBSRC funded work, Professor Arne Akbar's group at UCL showed that ageing in immune system cells known as 'T lymphocytes' was controlled by a molecule called 'p38 MAPK' that acts as a brake to prevent certain cellular functions.

They found that this braking action could be reversed by using a p38 MAPK inhibitor, suggesting the possibility of rejuvenating old T cells using drug treatment.

In a new study published today in Nature Immunology the group shows that p38 MAPK is activated by low nutrient levels, coupled with signals associated with age, or senescence, within the cell.

It has been suspected for a long time that nutrition, metabolism and immunity are linked and this paper provides a prototype mechanism of how nutrient and senescence signals converge to regulate the function of T lymphocytes.

The study also suggests that the function of old T lymphocytes could be reconstituted by blocking one of several molecules involved in the process. The research was conducted at UCL alongside colleagues from Complejo Hospitalario de Navarra, Pamplona, Spain.

The second paper, published in The Journal of Clinical Investigation, showed that blocking p38 MAPK boosted the fitness of cells that had shown signs of ageing; improving the function of mitochondria (the cellular batteries) and enhancing their ability to divide.

Extra energy for the cell to divide was generated by the recycling of intracellular molecules, a process known as autophagy. This highlights the existence of a common signaling pathway in old/senescent T lymphocytes that controls their immune function as well as metabolism, further underscoring the intimate association between ageing and metabolism of T lymphocytes.

This study was conducted by researchers from UCL, Cancer Research UK, University of Oxford and University of Tor Vergata, Rome, Italy.

Professor Arne Akbar said: "Our life expectancy at birth is now twice as long as it was 150 years ago and our lifespans are on the increase. Healthcare costs associated with ageing are immense and there will be an increasing number of older people in our population who will have a lower quality of life due in part to immune decline. It is therefore essential to understand reasons why immunity decreases and whether it is possible to counteract some of these changes.

"An important question is whether this knowledge can be used to enhance immunity during ageing. Many drug companies have already developed p38 inhibitors in attempts to treat inflammatory diseases. One new possibility for their use is that these compounds could be used to enhance immunity in older subjects. Another possibility is that dietary instead of drug intervention could be used to enhance immunity since metabolism and senescence are two sides of the same coin."

###

Notes to editors

Contact: Chris Melvin, BBSRC media officer, 01793 414694, chris.melvin@bbsrc.ac.uk

References:

The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells by Lanna et al is published in Nature Immunology.

The study was funded by BBSRC and the Medical Research Council.

p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8+ T cells by Henson et al is published in The Journal of Clinical Investigation.

The study was funded by BBSRC, the Medical Research Council, National Institute for Health Research, Wellcome Trust, Lady Tata Memorial Trust and Cancer Research UK.

Video: A UCL video about the research can be viewed at: http://youtu.be/oQ-unC7D9i4. Please note this video will be unlisted until the embargo lifts and should not be shared publically until that time.

About BBSRC

The Biotechnology and Biological Sciences Research Council (BBSRC) invests in world-class bioscience research and training on behalf of the UK public. Our aim is to further scientific knowledge, to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond. Funded by Government, BBSRC invested over £484M in world-class bioscience in 2013-14. We support research and training in universities and strategically funded institutes. BBSRC research and the people we fund are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Our investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals. For more information about BBSRC, our science and our impact see: http://www.bbsrc.ac.uk For more information about BBSRC strategically funded institutes see: http://www.bbsrc.ac.uk/institutes

About UCL (University College London)

Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender, and the first to provide systematic teaching of law, architecture and medicine. We are among the world's top universities, as reflected by performance in a range of international rankings and tables. UCL currently has almost 29,000 students from 150 countries and in the region of 10,000 employees. Our annual income is more than £900 million. http://www.ucl.ac.uk | Follow us on Twitter @uclnews | Watch our YouTube channel YouTube.com/UCLTV

Chris Melvin | Eurek Alert!

Further reports about: BBSRC Biotechnology Investigation MAPK UCL ageing decline eat function immune lymphocytes metabolism p38 senescence

More articles from Life Sciences:

nachricht Tiny songbird discovered to migrate non-stop, 1,500 miles over the Atlantic
01.04.2015 | University of Massachusetts at Amherst

nachricht The 'intraterrestrials': New viruses discovered in ocean depths
01.04.2015 | National Science Foundation

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lizard activity levels can help scientists predict environmental change

Research study provides new tools to assess warming temperatures

Spring is here and ectotherms, or animals dependent on external sources to raise their body temperature, are becoming more active. Recent studies have shown...

Im Focus: Hannover Messe 2015: Saving energy with smart façades

Glass-fronted office buildings are some of the biggest energy consumers, and regulating their temperature is a big job. Now a façade element developed by Fraunhofer researchers and designers for glass fronts is to reduce energy consumption by harnessing solar thermal energy. A demonstrator version will be on display at Hannover Messe.

In Germany, buildings account for almost 40 percent of all energy usage. Heating, cooling and ventilating homes, offices and public spaces is expensive – and...

Im Focus: Nonoxide ceramics open up new perspectives for the chemical and plant engineering

Outstanding chemical, thermal and tribological properties predestine silicon carbide for the production of ceramic components of high volume. A novel method now overcomes the procedural and technical limitations of conventional design methods for the production of components with large differences in wall thickness and demanding undercuts.

Extremely hard as diamond, shrinking-free manufacturing, resistance to chemicals, wear and temperatures up to 1300 °C: Silicon carbide (SiSiC) bundles all...

Im Focus: Experiment Provides the Best Look Yet at 'Warm Dense Matter' at Cores of Giant Planets

In an experiment at the Department of Energy's SLAC National Accelerator Laboratory, scientists precisely measured the temperature and structure of aluminum as...

Im Focus: Energy-autonomous and wireless monitoring protects marine gearboxes

The IPH presents a solution at HANNOVER MESSE 2015 to make ship traffic more reliable while decreasing the maintenance costs at the same time. In cooperation with project partners, the research institute from Hannover, Germany, has developed a sensor system which continuously monitors the condition of the marine gearbox, thus preventing breakdowns. Special feature: the monitoring system works wirelessly and energy-autonomously. The required electrical power is generated where it is needed – directly at the sensor.

As well as cars need to be certified regularly (in Germany by the TÜV – Technical Inspection Association), ships need to be inspected – if the powertrain stops...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Conference On Regenerative Medicine 2015: Registration And Abstract Submission Now Open

25.03.2015 | Event News

University presidents from all over the world meet in Hamburg

19.03.2015 | Event News

10. CeBiTec Symposium zum Big Data-Problem

17.03.2015 | Event News

 
Latest News

NASA covers Super Typhoon Maysak's rainfall, winds, clouds, eye

01.04.2015 | Earth Sciences

Quantum teleportation on a chip

01.04.2015 | Information Technology

Galaxy Clusters Formed as 'Fireworks'

01.04.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>