Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Are you as old as what you eat? Researchers learn how to rejuvenate aging immune cells


Researchers from UCL (University College London) have demonstrated how an interplay between nutrition, metabolism and immunity is involved in the process of ageing.

The two new studies, supported by the Biotechnology and Biological Sciences Research Council (BBSRC), could help to enhance our immunity to disease through dietary intervention and help make existing immune system therapies more effective.

As we age our immune systems decline. Older people suffer from increased incidence and severity of both infections and cancer. In addition, vaccination becomes less efficient with age.

In previous BBSRC funded work, Professor Arne Akbar's group at UCL showed that ageing in immune system cells known as 'T lymphocytes' was controlled by a molecule called 'p38 MAPK' that acts as a brake to prevent certain cellular functions.

They found that this braking action could be reversed by using a p38 MAPK inhibitor, suggesting the possibility of rejuvenating old T cells using drug treatment.

In a new study published today in Nature Immunology the group shows that p38 MAPK is activated by low nutrient levels, coupled with signals associated with age, or senescence, within the cell.

It has been suspected for a long time that nutrition, metabolism and immunity are linked and this paper provides a prototype mechanism of how nutrient and senescence signals converge to regulate the function of T lymphocytes.

The study also suggests that the function of old T lymphocytes could be reconstituted by blocking one of several molecules involved in the process. The research was conducted at UCL alongside colleagues from Complejo Hospitalario de Navarra, Pamplona, Spain.

The second paper, published in The Journal of Clinical Investigation, showed that blocking p38 MAPK boosted the fitness of cells that had shown signs of ageing; improving the function of mitochondria (the cellular batteries) and enhancing their ability to divide.

Extra energy for the cell to divide was generated by the recycling of intracellular molecules, a process known as autophagy. This highlights the existence of a common signaling pathway in old/senescent T lymphocytes that controls their immune function as well as metabolism, further underscoring the intimate association between ageing and metabolism of T lymphocytes.

This study was conducted by researchers from UCL, Cancer Research UK, University of Oxford and University of Tor Vergata, Rome, Italy.

Professor Arne Akbar said: "Our life expectancy at birth is now twice as long as it was 150 years ago and our lifespans are on the increase. Healthcare costs associated with ageing are immense and there will be an increasing number of older people in our population who will have a lower quality of life due in part to immune decline. It is therefore essential to understand reasons why immunity decreases and whether it is possible to counteract some of these changes.

"An important question is whether this knowledge can be used to enhance immunity during ageing. Many drug companies have already developed p38 inhibitors in attempts to treat inflammatory diseases. One new possibility for their use is that these compounds could be used to enhance immunity in older subjects. Another possibility is that dietary instead of drug intervention could be used to enhance immunity since metabolism and senescence are two sides of the same coin."


Notes to editors

Contact: Chris Melvin, BBSRC media officer, 01793 414694,


The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB1 drives the senescence of human T cells by Lanna et al is published in Nature Immunology.

The study was funded by BBSRC and the Medical Research Council.

p38 signaling inhibits mTORC1-independent autophagy in senescent human CD8+ T cells by Henson et al is published in The Journal of Clinical Investigation.

The study was funded by BBSRC, the Medical Research Council, National Institute for Health Research, Wellcome Trust, Lady Tata Memorial Trust and Cancer Research UK.

Video: A UCL video about the research can be viewed at: Please note this video will be unlisted until the embargo lifts and should not be shared publically until that time.


The Biotechnology and Biological Sciences Research Council (BBSRC) invests in world-class bioscience research and training on behalf of the UK public. Our aim is to further scientific knowledge, to promote economic growth, wealth and job creation and to improve quality of life in the UK and beyond. Funded by Government, BBSRC invested over £484M in world-class bioscience in 2013-14. We support research and training in universities and strategically funded institutes. BBSRC research and the people we fund are helping society to meet major challenges, including food security, green energy and healthier, longer lives. Our investments underpin important UK economic sectors, such as farming, food, industrial biotechnology and pharmaceuticals. For more information about BBSRC, our science and our impact see: For more information about BBSRC strategically funded institutes see:

About UCL (University College London)

Founded in 1826, UCL was the first English university established after Oxford and Cambridge, the first to admit students regardless of race, class, religion or gender, and the first to provide systematic teaching of law, architecture and medicine. We are among the world's top universities, as reflected by performance in a range of international rankings and tables. UCL currently has almost 29,000 students from 150 countries and in the region of 10,000 employees. Our annual income is more than £900 million. | Follow us on Twitter @uclnews | Watch our YouTube channel

Chris Melvin | Eurek Alert!

Further reports about: BBSRC Biotechnology Investigation MAPK UCL ageing decline eat function immune lymphocytes metabolism p38 senescence

More articles from Life Sciences:

nachricht How Cells in the Developing Ear ‘Practice’ Hearing
30.11.2015 | Johns Hopkins Medicine

nachricht New Analysis Technique for Chiral Activity in Molecules
30.11.2015 | Korea Advanced Institute of Science and Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

All Focus news of the innovation-report >>>



Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Latest News

Stretchy Slabs Found in the Deep Earth

30.11.2015 | Earth Sciences

How Cells in the Developing Ear ‘Practice’ Hearing

30.11.2015 | Life Sciences

Waters are more polluted than tests say: Standard toxicity analyses come up short

30.11.2015 | Ecology, The Environment and Conservation

More VideoLinks >>>