Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Are females glamorous because males are?

05.11.2015

The higher ornamentation of males is usually explained by sexual selection. However, there are also many highly ornamented females.

Scientists from the Max Planck Institute for Ornithology and colleagues quantified plumage colour of almost 6000 species of passerine birds and found that selection acts on the ornamentation of both sexes, even in opposite direction.


Male Olive-backed Sunbird (Cinnyris jugularis). This species is found from southern China to the Philippines and from Malaysia to northeastern Australia.

Kaspar Delhey


Pair of White-winged fairywren (Malurus leucopterus) from Australia.

Kaspar Delhey

Strong sexual selection on males led to an increase in their plumage colouration, but also to a more pronounced reduction in female ornamentation. The researchers found colourful females predominantly in larger species, in species living in the tropics and in cooperatively breeding species.

Sperm is small and cheap and eggs are large and expensive – this fact of life is the reason why females invest more in their offspring than males, and why males have to compete and females can be choosy.

Ornamental traits such as plumage colour may signal a male’s competitiveness or attractiveness to the opposite sex, and therefore ornamented males will enjoy higher reproductive success. Sexual selection will thus lead to increased male ornamentation.

But how then can it be explained that females of many species are also highly ornamented? A widely held view is that female ornamentation is a side-effect of selection on males. Under strong sexual selection, males should become more ornamented, and because females inherit the same genes, they will become more ornamented as well.

However, often both sexes compete for resources such as food and territories, and plumage ornamentation could be advantageous in this competition for females as well. Birds are ideal to study this: they show extraordinary variation in plumage colouration in both sexes, with males being more colourful than females, with both sexes looking alike or with females being the more colourful sex.

To answer the question of which selective forces act on plumage colouration in males and females, a team of researchers from the Max Planck Institute for Ornithology in Seewiesen together with colleagues in New Zealand, Canada, and Australia quantified plumage colour of males and females in almost 6000 species of passerine birds, listed in the “Handbook of the birds of the World”.

The scientists found the colour elaboration of males being highly correlated with that of females, suggesting that there are limitations to independent evolution of plumage ornamentation in each sex. However, contrary to the expectation, strong sexual selection on males – which led to increased colouration – had an antagonistic and stronger effect on females.

“Strong sexual selection leads to larger differences in ornamentation between the sexes, but the most obvious is not that males become more colourful, but that females becoming duller” summarizes Mihai Valcu.

The scientists also found that larger species and species that live in the tropics are more colourful, and this is true in both sexes. Being large reduces predation risk and hence being colourful may be less “costly” in those species. In the tropics, resource competition is typically higher, and therefore it may be more important to signal quality via increased ornamentation.

Overall, interspecific variation in plumage colour can be better explained in females than in males: females are more colourful in monogamous species and in cooperatively breeding species, where the competition among females over mating opportunities is higher.

“Our study shows that plumage ornamentation of females is not simply a by-product of the ornamentation in males”, says Bart Kempenaers, director in Seewiesen. In fact, it seems that females are highly ornamented when they also benefit from signalling their quality or competitiveness, either because it plays a role in mate choice, or via competition among females.

Weitere Informationen:

http://www.mpg.de/9711615/birds-plumage-colouration
http://DOI: 10.1038/nature15509

Dr. Sabine Spehn | Max-Planck-Institut für Ornithologie

Further reports about: Max Planck Institute Max-Planck-Institut breeding female females plumage species tropics

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>