Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic plants face an uncertain future

17.01.2012
New research shows that a warmer climate will have quite different consequences for plant species in the Arctic. While most species are expected to lose part of their current habitat, the genetic consequences will differ markedly among species. The research results will have major impact on future conservation efforts.

Future climate change will have a major impact on biological diversity. This is especially true in Arctic and alpine environments, which will be exposed to the most extreme climate changes.

Several studies have explored the consequences of climate change on biological diversity, but in most cases these have focused on a species as a whole and not taken into account the genetic variations within a species.

In a novel study scientists from Norway, Austria and France show that the expected genetic consequences on plants are quite different among the various species.

- This study is the first to use empirical data to estimate loss of genetic diversity by loss of habitat for several plant species under different climate scenarios, says Inger Greve Alsos, associate professor at Tromsø University Museum, University of Tromsø and affiliated with the University Centre in Svalbard (UNIS).

Alsos is the lead investigator in the study that compares and analyzes data from several projects led by Professor Christian Brochmann from the Natural History Museum (University of Oslo), many of them together with Pierre Taberlet from the Université Joseph Fourier in Grenoble. Wilfried Thuiller, CNRS, was responsible for modelling present and future geographical distribution of the species. In addition, scientists from University of Salzburg and University of Innsbruck have participated.

Seed dispersal important
Alsos and her team have analyzed almost 10,000 samples from 27 plant species in the Arctic and certain alpine environments in Central Europe.

The results show that species that utilize wind and birds to disperse their seeds will lose less of their genetic diversity in a warmer climate than species that have a very limited, or local, seed dispersal. In addition, the species’ growth form is important. Trees and shrubs are usually taller and have a longer lifespan than herbs, and thereby disperse and preserve their genes better than many of the herb species.

- Genetic variation is crucial for species to adapt to changing climate. If a species with limited seed dispersal perish from an area, it means that this species as a whole will experience an irrevocable loss of genetic diversity, Alsos explains.

One example of the latter is the Glacier crowfoot (Ranunculus glacialis). This species grows only on mountain tops and has little gene flow between populations. Hence, this species is expected to lose large part of its genetic diversity in a warmer climate.

Dwarf birch (Betula nana) on the other hand, will fare well in a warmer climate. This species disperse its seeds with the wind and has a long lifespan (it can live for more than 100 years). In other words, its prospects are good as there is sufficient gene flow between populations.

The differences found in reduced genetic diversity in species with differing growth forms and seed dispersal patterns were larger than the scientists had foreseen.

- These results showcase how important it is to emphasize the variations within a species, Alsos says.

Some species can experience a reduction of up to 80 per cent of their habitat, but still retain over 90 per cent of their genetic diversity. Other species might just lose half of their genetic diversity if their habitat is reduced by 65 per cent.

Implications for the Red List
The results of this study will have important implications for the future of the International Union for Conservation of Nature (IUCN) Red List. Currently, the Red List regime is a measure to identify threatened species and promote their conservation. One of the criteria used to decide whether a species is threatened or not, is whether the species has experienced a substantial loss of habitat or population size.

In a future warmer climate, this red list will be so extensive that it will be impossible to conserve all threatened species.

- This study will be an important tool for making a prioritized list of species that it is important to conserve, Alsos says.

The techniques employed in this study will be suitable in studies of other organisms, such as birds and insects, to look for patterns within a species that are linked to reduction in genetic diversity. These techniques can therefore be used as an early warning system for species’ vulnerability to climate change.

Inger G. Alsos | alfa
Further information:
http://rspb.royalsocietypublishing.org/content/early/2012/01/03/rspb.2011.2363.abstract

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>