Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic plants face an uncertain future

17.01.2012
New research shows that a warmer climate will have quite different consequences for plant species in the Arctic. While most species are expected to lose part of their current habitat, the genetic consequences will differ markedly among species. The research results will have major impact on future conservation efforts.

Future climate change will have a major impact on biological diversity. This is especially true in Arctic and alpine environments, which will be exposed to the most extreme climate changes.

Several studies have explored the consequences of climate change on biological diversity, but in most cases these have focused on a species as a whole and not taken into account the genetic variations within a species.

In a novel study scientists from Norway, Austria and France show that the expected genetic consequences on plants are quite different among the various species.

- This study is the first to use empirical data to estimate loss of genetic diversity by loss of habitat for several plant species under different climate scenarios, says Inger Greve Alsos, associate professor at Tromsø University Museum, University of Tromsø and affiliated with the University Centre in Svalbard (UNIS).

Alsos is the lead investigator in the study that compares and analyzes data from several projects led by Professor Christian Brochmann from the Natural History Museum (University of Oslo), many of them together with Pierre Taberlet from the Université Joseph Fourier in Grenoble. Wilfried Thuiller, CNRS, was responsible for modelling present and future geographical distribution of the species. In addition, scientists from University of Salzburg and University of Innsbruck have participated.

Seed dispersal important
Alsos and her team have analyzed almost 10,000 samples from 27 plant species in the Arctic and certain alpine environments in Central Europe.

The results show that species that utilize wind and birds to disperse their seeds will lose less of their genetic diversity in a warmer climate than species that have a very limited, or local, seed dispersal. In addition, the species’ growth form is important. Trees and shrubs are usually taller and have a longer lifespan than herbs, and thereby disperse and preserve their genes better than many of the herb species.

- Genetic variation is crucial for species to adapt to changing climate. If a species with limited seed dispersal perish from an area, it means that this species as a whole will experience an irrevocable loss of genetic diversity, Alsos explains.

One example of the latter is the Glacier crowfoot (Ranunculus glacialis). This species grows only on mountain tops and has little gene flow between populations. Hence, this species is expected to lose large part of its genetic diversity in a warmer climate.

Dwarf birch (Betula nana) on the other hand, will fare well in a warmer climate. This species disperse its seeds with the wind and has a long lifespan (it can live for more than 100 years). In other words, its prospects are good as there is sufficient gene flow between populations.

The differences found in reduced genetic diversity in species with differing growth forms and seed dispersal patterns were larger than the scientists had foreseen.

- These results showcase how important it is to emphasize the variations within a species, Alsos says.

Some species can experience a reduction of up to 80 per cent of their habitat, but still retain over 90 per cent of their genetic diversity. Other species might just lose half of their genetic diversity if their habitat is reduced by 65 per cent.

Implications for the Red List
The results of this study will have important implications for the future of the International Union for Conservation of Nature (IUCN) Red List. Currently, the Red List regime is a measure to identify threatened species and promote their conservation. One of the criteria used to decide whether a species is threatened or not, is whether the species has experienced a substantial loss of habitat or population size.

In a future warmer climate, this red list will be so extensive that it will be impossible to conserve all threatened species.

- This study will be an important tool for making a prioritized list of species that it is important to conserve, Alsos says.

The techniques employed in this study will be suitable in studies of other organisms, such as birds and insects, to look for patterns within a species that are linked to reduction in genetic diversity. These techniques can therefore be used as an early warning system for species’ vulnerability to climate change.

Inger G. Alsos | alfa
Further information:
http://rspb.royalsocietypublishing.org/content/early/2012/01/03/rspb.2011.2363.abstract

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>