Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic bacteria -- some like it hot

18.09.2009
Surprisingly high numbers of heat-loving bacteria found in the cold Arctic Ocean

In subzero sediments off the island of Spitsbergen, scientists from the German Max Planck Institute for Marine Microbiology have detected high numbers of thermophilic (heat-loving) bacteria that are adapted to live in much warmer habitats.

These thermophiles exist in the Arctic as spores -- dormant forms that withstand adverse conditions for long periods, waiting for better times.

Experimental incubations at 40 to 60 degrees Celsius revive the Arctic spores, which appear to have been transported from distant hot spots. The discovery could shed new light on one of microbiology's great hypotheses: "Everything is everywhere, but, the environment selects."

The thermophilic spores were discovered during the Max Planck Institute's ongoing research into temperature adaptations of psychrophilic (cold-loving) bacteria in Spitsbergen's permanently cold fjords. Biological activity was measured by incubating sediment samples with labeled substrate at increasing temperatures. The scientists were impressed to see the activity increase dramatically above 40 degrees Celsius. Some dormant spores had apparently come back to life.

The results presented a unique opportunity to study misplaced microbes in a quantitative way. Using metabolic rate measurements, the researchers estimated that a single gram of the Arctic sediment contains up to 100 000 thermophilic spores. This abundance combined with the unusual location is what Max Planck Director Prof. Bo Barker Jørgensen finds exciting: "What is novel here is not the discovery of thermophiles in the Arctic, but demonstrating their high numbers and constant rate of supply." By measuring the sediment accumulation rate, the team calculated an annual deposition of 100 million thermophiles per square meter of the seabed.

So, where are the Arctic thermophiles coming from? Lead author Casey Hubert narrows down the possibilities: "The large and steady flux of anaerobic bacteria indicates that they are coming from a huge anoxic (free of oxygen) source." Transport pathways connecting these hot spots to the cold ocean must also exist. The researchers speculate fluid circulation through spreading ridges where the ocean crust forms and "black smokers" and other hydrothermal vents occur, since bacteria from these systems are genetically similar to the Arctic thermophiles. Another source could be deep hot sub-marine oil reservoirs where gas and oil leak upwards, eventually penetrating the sea floor. "The genetic similarities to bacteria from hot North Sea oil reservoirs are striking," adds Dr. Hubert. The scientists hope further experiments and genetic forensics will reveal the warm source. The spores might provide a unique opportunity to trace seepages from the hot subsurface, possibly pointing towards undiscovered offshore petroleum deposits.

In the meantime, the findings provide fresh insight for understanding marine biodiversity and the "hidden rare biosphere." Obscured by the major bacterial groups in a given environment are countless minorities that do not contribute to element cycling in any detectable way. Microbiologists continue to puzzle over how bacteria spread out to establish the vast microbial diversity that is measured in nature. The thermophilic spores appear to hold important clues about this riddle of biogeography, even as they sit dormant in the cold Arctic sediment, waiting in vain for better times.

This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Max Planck Society, the Austrian Science Fund, and the National Science Foundation (US).

Manfred Schlösser
"A Constant Flux of Diverse Thermophilic Bacteria into the Cold Arctic Seabed".
Casey Hubert, Alexander Loy, Maren Nickel, Carol Arnosti, Christian Baranyi, Volker Brüchert, Timothy Ferdelman, Kai Finster, Flemming Mønsted Christensen, Júlia Rosa de Rezende, Verona Vandieken, and Bo Barker Jørgensen. Science, 18 September 2009 doi

For further information please contact:

Casey Hubert, PhD
University of Newcastle, UK
casey.hubertnewcastle.ac.uk
+44 191 246 4864
Prof. Bo Barker Jørgensen,
Director of the Max Planck Institute for Marine Microbiology
and Head of the Center for Geomicrobiology
Dept. of Biological Sciences, Aarhus University
bo.barkerbiology.au.dk
+45 8942 3314
Timothy Ferdelman, PhD
Head of the Biogeochemistry Group at the Max Planck- nstitute for Marine Microbiology
tferdelmmpi-bremen.de
+49 421 2028 632
or the MPI press officers
Manfred Schloesser, +49 421 2028704, mschloesmpi-bremen.de
Susanne Borgwardt sborgwarmpi-bremen.de
Institutes
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany.

Department of Microbial Ecology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.

Department of Marine Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-3300, USA.

Department of Biological Sciences - Microbiology section, Aarhus University, Ny Munkegade, Building 1535, DK-8000 Aarhus C, Denmark.

Center for Geomicrobiology, Department of Biological Sciences, Aarhus University, Ny Munkegade, Building 1535, DK-8000 Aarhus C, Denmark.

Dr. Manfred Schloesser | Max-Planck-Gesellschaft
Further information:
http://www.mpi-bremen.de

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>