Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic bacteria -- some like it hot

18.09.2009
Surprisingly high numbers of heat-loving bacteria found in the cold Arctic Ocean

In subzero sediments off the island of Spitsbergen, scientists from the German Max Planck Institute for Marine Microbiology have detected high numbers of thermophilic (heat-loving) bacteria that are adapted to live in much warmer habitats.

These thermophiles exist in the Arctic as spores -- dormant forms that withstand adverse conditions for long periods, waiting for better times.

Experimental incubations at 40 to 60 degrees Celsius revive the Arctic spores, which appear to have been transported from distant hot spots. The discovery could shed new light on one of microbiology's great hypotheses: "Everything is everywhere, but, the environment selects."

The thermophilic spores were discovered during the Max Planck Institute's ongoing research into temperature adaptations of psychrophilic (cold-loving) bacteria in Spitsbergen's permanently cold fjords. Biological activity was measured by incubating sediment samples with labeled substrate at increasing temperatures. The scientists were impressed to see the activity increase dramatically above 40 degrees Celsius. Some dormant spores had apparently come back to life.

The results presented a unique opportunity to study misplaced microbes in a quantitative way. Using metabolic rate measurements, the researchers estimated that a single gram of the Arctic sediment contains up to 100 000 thermophilic spores. This abundance combined with the unusual location is what Max Planck Director Prof. Bo Barker Jørgensen finds exciting: "What is novel here is not the discovery of thermophiles in the Arctic, but demonstrating their high numbers and constant rate of supply." By measuring the sediment accumulation rate, the team calculated an annual deposition of 100 million thermophiles per square meter of the seabed.

So, where are the Arctic thermophiles coming from? Lead author Casey Hubert narrows down the possibilities: "The large and steady flux of anaerobic bacteria indicates that they are coming from a huge anoxic (free of oxygen) source." Transport pathways connecting these hot spots to the cold ocean must also exist. The researchers speculate fluid circulation through spreading ridges where the ocean crust forms and "black smokers" and other hydrothermal vents occur, since bacteria from these systems are genetically similar to the Arctic thermophiles. Another source could be deep hot sub-marine oil reservoirs where gas and oil leak upwards, eventually penetrating the sea floor. "The genetic similarities to bacteria from hot North Sea oil reservoirs are striking," adds Dr. Hubert. The scientists hope further experiments and genetic forensics will reveal the warm source. The spores might provide a unique opportunity to trace seepages from the hot subsurface, possibly pointing towards undiscovered offshore petroleum deposits.

In the meantime, the findings provide fresh insight for understanding marine biodiversity and the "hidden rare biosphere." Obscured by the major bacterial groups in a given environment are countless minorities that do not contribute to element cycling in any detectable way. Microbiologists continue to puzzle over how bacteria spread out to establish the vast microbial diversity that is measured in nature. The thermophilic spores appear to hold important clues about this riddle of biogeography, even as they sit dormant in the cold Arctic sediment, waiting in vain for better times.

This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Max Planck Society, the Austrian Science Fund, and the National Science Foundation (US).

Manfred Schlösser
"A Constant Flux of Diverse Thermophilic Bacteria into the Cold Arctic Seabed".
Casey Hubert, Alexander Loy, Maren Nickel, Carol Arnosti, Christian Baranyi, Volker Brüchert, Timothy Ferdelman, Kai Finster, Flemming Mønsted Christensen, Júlia Rosa de Rezende, Verona Vandieken, and Bo Barker Jørgensen. Science, 18 September 2009 doi

For further information please contact:

Casey Hubert, PhD
University of Newcastle, UK
casey.hubertnewcastle.ac.uk
+44 191 246 4864
Prof. Bo Barker Jørgensen,
Director of the Max Planck Institute for Marine Microbiology
and Head of the Center for Geomicrobiology
Dept. of Biological Sciences, Aarhus University
bo.barkerbiology.au.dk
+45 8942 3314
Timothy Ferdelman, PhD
Head of the Biogeochemistry Group at the Max Planck- nstitute for Marine Microbiology
tferdelmmpi-bremen.de
+49 421 2028 632
or the MPI press officers
Manfred Schloesser, +49 421 2028704, mschloesmpi-bremen.de
Susanne Borgwardt sborgwarmpi-bremen.de
Institutes
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany.

Department of Microbial Ecology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.

Department of Marine Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-3300, USA.

Department of Biological Sciences - Microbiology section, Aarhus University, Ny Munkegade, Building 1535, DK-8000 Aarhus C, Denmark.

Center for Geomicrobiology, Department of Biological Sciences, Aarhus University, Ny Munkegade, Building 1535, DK-8000 Aarhus C, Denmark.

Dr. Manfred Schloesser | Max-Planck-Gesellschaft
Further information:
http://www.mpi-bremen.de

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>