Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Arctic bacteria -- some like it hot

18.09.2009
Surprisingly high numbers of heat-loving bacteria found in the cold Arctic Ocean

In subzero sediments off the island of Spitsbergen, scientists from the German Max Planck Institute for Marine Microbiology have detected high numbers of thermophilic (heat-loving) bacteria that are adapted to live in much warmer habitats.

These thermophiles exist in the Arctic as spores -- dormant forms that withstand adverse conditions for long periods, waiting for better times.

Experimental incubations at 40 to 60 degrees Celsius revive the Arctic spores, which appear to have been transported from distant hot spots. The discovery could shed new light on one of microbiology's great hypotheses: "Everything is everywhere, but, the environment selects."

The thermophilic spores were discovered during the Max Planck Institute's ongoing research into temperature adaptations of psychrophilic (cold-loving) bacteria in Spitsbergen's permanently cold fjords. Biological activity was measured by incubating sediment samples with labeled substrate at increasing temperatures. The scientists were impressed to see the activity increase dramatically above 40 degrees Celsius. Some dormant spores had apparently come back to life.

The results presented a unique opportunity to study misplaced microbes in a quantitative way. Using metabolic rate measurements, the researchers estimated that a single gram of the Arctic sediment contains up to 100 000 thermophilic spores. This abundance combined with the unusual location is what Max Planck Director Prof. Bo Barker Jørgensen finds exciting: "What is novel here is not the discovery of thermophiles in the Arctic, but demonstrating their high numbers and constant rate of supply." By measuring the sediment accumulation rate, the team calculated an annual deposition of 100 million thermophiles per square meter of the seabed.

So, where are the Arctic thermophiles coming from? Lead author Casey Hubert narrows down the possibilities: "The large and steady flux of anaerobic bacteria indicates that they are coming from a huge anoxic (free of oxygen) source." Transport pathways connecting these hot spots to the cold ocean must also exist. The researchers speculate fluid circulation through spreading ridges where the ocean crust forms and "black smokers" and other hydrothermal vents occur, since bacteria from these systems are genetically similar to the Arctic thermophiles. Another source could be deep hot sub-marine oil reservoirs where gas and oil leak upwards, eventually penetrating the sea floor. "The genetic similarities to bacteria from hot North Sea oil reservoirs are striking," adds Dr. Hubert. The scientists hope further experiments and genetic forensics will reveal the warm source. The spores might provide a unique opportunity to trace seepages from the hot subsurface, possibly pointing towards undiscovered offshore petroleum deposits.

In the meantime, the findings provide fresh insight for understanding marine biodiversity and the "hidden rare biosphere." Obscured by the major bacterial groups in a given environment are countless minorities that do not contribute to element cycling in any detectable way. Microbiologists continue to puzzle over how bacteria spread out to establish the vast microbial diversity that is measured in nature. The thermophilic spores appear to hold important clues about this riddle of biogeography, even as they sit dormant in the cold Arctic sediment, waiting in vain for better times.

This work was supported by the Natural Sciences and Engineering Research Council of Canada, the Max Planck Society, the Austrian Science Fund, and the National Science Foundation (US).

Manfred Schlösser
"A Constant Flux of Diverse Thermophilic Bacteria into the Cold Arctic Seabed".
Casey Hubert, Alexander Loy, Maren Nickel, Carol Arnosti, Christian Baranyi, Volker Brüchert, Timothy Ferdelman, Kai Finster, Flemming Mønsted Christensen, Júlia Rosa de Rezende, Verona Vandieken, and Bo Barker Jørgensen. Science, 18 September 2009 doi

For further information please contact:

Casey Hubert, PhD
University of Newcastle, UK
casey.hubertnewcastle.ac.uk
+44 191 246 4864
Prof. Bo Barker Jørgensen,
Director of the Max Planck Institute for Marine Microbiology
and Head of the Center for Geomicrobiology
Dept. of Biological Sciences, Aarhus University
bo.barkerbiology.au.dk
+45 8942 3314
Timothy Ferdelman, PhD
Head of the Biogeochemistry Group at the Max Planck- nstitute for Marine Microbiology
tferdelmmpi-bremen.de
+49 421 2028 632
or the MPI press officers
Manfred Schloesser, +49 421 2028704, mschloesmpi-bremen.de
Susanne Borgwardt sborgwarmpi-bremen.de
Institutes
Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, D-28359 Bremen, Germany.

Department of Microbial Ecology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria.

Department of Marine Sciences, University of North Carolina, Chapel Hill, North Carolina 27599-3300, USA.

Department of Biological Sciences - Microbiology section, Aarhus University, Ny Munkegade, Building 1535, DK-8000 Aarhus C, Denmark.

Center for Geomicrobiology, Department of Biological Sciences, Aarhus University, Ny Munkegade, Building 1535, DK-8000 Aarhus C, Denmark.

Dr. Manfred Schloesser | Max-Planck-Gesellschaft
Further information:
http://www.mpi-bremen.de

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>