Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Archivist in the sound library – New model for speech and sound recognition

15.09.2011
People are adept at recognizing sensations such as sounds or smells, even when many stimuli appear simultaneously.

But how the association works between the current event and memory is still poorly understood. Scientists at the Bernstein Center and the Ludwig-Maximilians Universität (LMU) Munich have developed a mathematical model that accurately mimics this process with little computational effort and may explain experimental findings that have so far remained unclear. (PLoS ONE, September 14, 2011)

The so-called ‘cocktail party-problem’ has already kept scientists busy for decades. How is it possible for the brain to filter familiar voices out of background noise? It is a long-standing hypothesis that we create a kind of sound library in the auditory cortex of the brain during the course of our lives. Professor Christian Leibold and Dr. Gonzalo Otazu, members of the Bernstein Center Munich and engaged at the Ludwig-Maximilians Universität (LMU) Munich now show in a new model how the brain can compare stored and perceived sounds in a particularly efficient manner. Figuratively speaking, current models operate on the following principle: An archivist (possibly the brain region thalamus) compares the incoming sound with the individual entries in the library, and receives the degree of matching for each entry. Usually, however, several entries fit similarly well, so the archivist does not know which result is actually the right one.

The new model is different: as previously the archivist compares the sound with the library entries, this time getting back only a few really relevant records and information about how much the archived and heard elements differ. Therefore, only in the case of unknown or little matching inputs are large amounts of data sent back. “Perhaps this is also one reason why we can ignore known sounds better than new ones,” speculates Leibold, head of the study. During a test, the model was easily able to detect the sound of a violin and a grasshopper at the same time from 400 sounds with an overlapping frequency spectrum. Furthermore computational and memory requirements were significantly smaller than in comparable models. For the first time a library-based model allows a highly efficient real-time implementation, which is a prerequisite for an implementation in brain circuits.

Experiments long ago showed that a lot of information is sent from the cerebrum to the thalamus, so far without a universally accepted explanation. The new model predicts exactly this flow of information. “We quickly knew that our model works. But why and how, we had to find out laboriously,” Leibold says. Abstract mathematical models of neurobiological processes have the advantage that all contributing factors are known. Thus, one can show whether the model works well in a broad, biologically relevant, application-spectrum, as in this case. The researchers now want to incorporate their findings into other models that are more biologically detail-oriented, and finally test it in psychoacoustic experiments. (Faber/Bernstein Coordination Site)

The Bernstein Center Munich is part of the National Bernstein Network Computational Neuroscience (NNCN) in Germany. The NNCN was established by the German Federal Ministry of Education and Research with the aim of structurally interconnecting and developing German capacities in the new scientific discipline of computational neuroscience. The network is named after the German physiologist Julius Bernstein (1835–1917).

Original publication:
Otazu G, Leibold C (2011): A corticothalamic circuit model for sound identification in complex scenes. doi: 10.1371/journal.pone.0024270 http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0024270
For further information please contact:
Prof. Christian Leibold
Bernstein Center for Computational Neuroscience
Department Biology II
Ludwig-Maximilians-Universität Munich
Großhaderner Straße 2
D-82152 Planegg-Martinsried

Johannes Faber | idw
Further information:
http://www.bccn-muenchen.de/
http://www.nncn.de/
http://www.lmu.de/

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>