Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Archaea: Four cells turn seabed microbiology upside down

28.03.2013
With DNA from just four cells, Danish researchers reveal how some of the world’s most abundant organisms play a key role in carbon cycling in the seabed.

Single-celled archaea are invisible to the naked eye, and even when using a microscope, great care must be taken to observe them. An international team of researchers led by the Center for Geomicrobiology, Aarhus University, has nevertheless succeeded in retrieving four archaeal cells from seabed mud and mapping the genome of each one.

“Until now, nobody knew how these widespread mud-dwelling archaea actually live. Mapping the genome from the four archaeal cells shows they all have genes that enable them to live on protein degradation,” says Postdoctoral Fellow Dr. Dorthe Groth Petersen, who is a part of the research group publishing the ground-breaking results today in the renowned journal Nature.

Scientists previously thought that proteins were only broken down in the sea by bacteria, but archaea have now turned out to be important new key organisms in protein degradation in the seabed. Proteins actually make up a large part of the organic matter in the seabed and – since the seabed has the world’s largest deposit of organic carbon – archaea thus appear to play an important and previously unknown role in the global carbon cycle.

Like a grain of sand on the beach

Archaea are some of the most abundant organisms in the world, but very few people have ever heard of them. They were originally discovered in extreme environments such as hot springs and other special environments like cow stomachs and rice paddies, where they form methane. In recent years, however, researchers have realised that archaea make up a large part of the microorganisms in the seabed, and that the seabed is also the habitat of the majority of the world’s microorganisms.

“A realistic estimate is that archaea are the group of organisms with the most individuals in the world. In fact, there are more archaea than there are grains of sand on the beaches of the whole world. If you bury your toes right down in the mud in the seabed, you’ll be in touch with billions of archaea,” says Professor Bo Barker Jørgensen, Director of the Center for Geomicrobiology.

New technology links function and identity

This is the first time that scientists have succeeded in classifying archaeal cells in a mud sample from the seabed and subsequently analysing the genome of the cells, thereby revealing what the organisms are and what they live on.
“At present, we can’t culture these archaea or store them in the laboratory, so this rules out the physiological tests usually carried out by the microbiologists. We’ve therefore worked with cell extraction, cell sorting, and subsequent mapping of the individual cell’s combined genetic information – that’s to say its genome. This is a new approach that can reveal both a cell’s identity and its lifestyle,” says Professor of Microbiology Andreas Schramm, affiliated with the Center for Geomicrobiology.

Dr. Michael Richter from Ribocon has developed the Software to analyse the genomic data and was involved in this project, too. ”Raw genomic data alone are not enough. These data have to be translated like a book in a foreign language into words, sentences, punctuation marks, chapters and sections in order to identify the genes and their regulators. This can be accomplished with our software. Researcher can reconstruct complete cellular pathways and transportion processes in the computer.”

The method opens up a new world of knowledge for microbiologists, who can now study an individual microorganism just as zoologists study an individual mouse. Microbiologists have been hoping for this for a long time. Until now, they have only been familiar with the life processes of less than 1% of the world’s microorganisms – those they can culture in a laboratory. The new method provides opportunities for studying the remaining 99% directly from nature, without being dependent on culturing the microorganisms in the laboratory. In future, this method will no doubt reveal new, unknown functions of microorganisms from many different environments.
For more information please contact
Professor Andreas Schramm, Microbiology and Center for Geomicrobiology, Department of Bioscience, Aarhus University, +45 8715 6541/6020 2659, andreas.schramm@biology.au.dkmailto:bo.barker@biology.au.dk

Dr. Michael Richter, Ribocon, Fahrenheitstraße 1, 28359 Bremen.
+49 421 2487053 mrichter@ribocon.com

or the press officers at the Max Planck Institiute for Marine Microbiology
Dr. Manfred Schlösser mschloes@mpi-bremen.de +49 (0) 421 2028 704
Dr. Rita Dunker rdunker@mpi-bremen.de +49 (0) 421 2028 856

Original publication
Predominant archaea in marine sediments degrade detrital proteins
Karen G. Lloyd, Lars Schreiber, Dorthe G. Petersen, Kasper Kjeldsen, Mark A.
Lever, Andrew D. Steen, Ramunas Stepanauskas, Michael Richter, Sara Kleindienst,
Sabine Lenk, Andreas Schramm, Bo B. Jørgensen
Nature 2013, 10.1038/nature12033

Institutes

Center for Geomicrobiology, Aarhus University, Denmark (geomicrobiology.au.dk)
University of Tennessee, Knoxville, TN, USA (www.utk.edu)
Bigelow Laboratory for Ocean Sciences, East Boothbay, Maine, USA (www.bigelow.org/)
Max Plank Institute for Marine Microbiology, Bremen, Germany www.mpi-bremen.de
Ribocon GmbH, Bremen (www.ribocon.com)

Dr. Manfred Schloesser | Max-Planck-Institut
Further information:
http://www.mpi-bremen.de

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>