Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aqueous iron interacts as strong as solid iron

09.07.2012
Advances spectroscopy research: HZB scientists come up with new method for examining the structure of metal ions-complexes in solution

HZB scientists have apply a new method – 'inverse Partial Fluorescence Yield' (iPFY) on micro-jet – which will enable them to probe the electronic structure of liquids free of sample damages. The experiments are performed in vacuum conditions at the LiXEdrom experimental chamber, where a fluid stream of micrometer diameter is moving freely through vacuum and is continuously irradiated with X-ray radiation.


Metal ions in solution can be examined using soft X-ray radiation. In addition to metal ions, the free fluid stream in the vacuum also contains oxygen, which, following X-ray irradiation, begins to glow, ultimately affecting metal ion
absorption. Researchers can now calculate the metal ions’ absorptive strength and make inferences regarding the ions' electronic structures. Fig: HZB

These kinds of experiments are important as they reveal the interaction strength of the X-rays with the liquids and therefore allow for the structural analysis of substances dissolved in solution. “The method will achieve its absolute apprehension when will be applied to metal ions that are part of chemical catalysts used for clean energy production and biocatalysts (protein enzymes) used in biochemical transformation inside the living cells – the team leader Prof. Aziz stated, which is the next milestone in our research progress. Previously, these types of experiments were so far only possible if the fluid was contained between two membranes, where radiation damages and membrane induced artifacts were a crucial issue.

HZB's Young Investigator Group for Functional Materials in Solution headed by Prof. Dr. Emad Aziz has already applied the new method in iron ions dissolved in aqueous solution. Their findings have now been published in the Journal of Physical Chemistry Letters (DOI: 10.1021/jz300403n).

The researchers used X-ray radiation – generated by HZB's own electron storage ring BESSY II – to examine iron ions in aqueous solution. "We measured the absorption strength of the X-rays from our Fe 2+ and oxygen ions in the liquid micro-beam" explains Malte Gotz, who performed the experiments as part of his graduate research. "From here, we were able to draw conclusions regarding the electronic structure of the iron ions and further more to investigate the interaction of iron ions with the water solvent, " says Gotz.

The researchers used a new approach to measuring X-ray absorption of liquids. "Oxygen, which, along with iron ions, is also present in the solution, turns out to play a rather important role. If X-ray light is used to irradiate – and thereby the oxygen that is present in the water will absorb this radiation, and will end up emitting light for a brief period of time. You might compare it to the glow-in-the-dark of a clock," Gotz explains. If you now reduce the amount of incoming radiation by having a different material – in this case ionic iron absorbs it, it will directly reduce the amount of radiation emitted by the oxygen. "This in turn allows us to measure the absorption strength of ionic iron," says Gotz.

According to Emad Aziz, by definition, any measurement obtained at the free fluid stream is highly accurate. "A major advantage of our protocol is the fact that besides measuring only the signal from our fluid stream – without having to account for any artifacts induced by the surrounding container – we are also measuring a continuously fresh liquid sample," Aziz explains. In their studies the scientists found that iron ions suspended in the solution interact strongly with the solvent; a conclusion drawn by the strong 'Coster Kroenig decay process’ observed in the liquid system, which were thus far observed only in solid iron. "We concluded that ions interact more strongly with water than was previously thought," says Aziz.

Our next step is to apply the new method to biological functional materials where the transition metals play key biological functions- such as oxygen-carrying iron in human blood. New and deep insights into these catalysts’ structure and function are the challenge of our scientific research.

Dr. Emad F. Aziz | EurekAlert!
Further information:
http://www.helmholtz-berlin.de
http://www.helmholtz-berlin.de/pubbin/news_seite?nid=13536&sprache=en&typoid=

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Joining metals without welding

23.04.2018 | Trade Fair News

Researchers illuminate the path to a new era of microelectronics

23.04.2018 | Information Technology

Rochester scientists discover gene controlling genetic recombination rates

23.04.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>