Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aquatic Insects – a tremendous potential for research on diversification

05.02.2014
Inland waters cover less than 1% of the Earth's surface yet harbor 10% of all known animal species, 60% of them being aquatic insects. Nearly 100,000 species from 12 orders spend one or more life stages in freshwater.

Still today, little is known on how this remarkable diversity arose. Scientists of the Biodiversity and Climate Research Centre (BiK-F), the Naturalis Biodiversity Center in Leiden and the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) in Berlin therefore investigated the potential of aquatic insects for research on diversification. The results have now been published in the renowned Annual Review for Entomology.


A typical karst spring and stream in the western Balkan Peninsula that is home to a microendemic caddisfly species of the genus Drusus.

© Ana Previsic

Freshwaters cover less than 1% of the Earth’s surface, but harbour 10% of all animal. Six out of ten of currently known species are insects. In a recently published review an international team of researchers from the Biodiversity and Climate Research Centre (BiK-F), the Biodiversity Center in Leiden, and the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) in Berlin analyzed how studying the vast diversity of aquatic insects may contribute to a better understanding of diversification processes.

„Analyzing the reasons behind the disproportionately high degree of aquatic insect diversity relative to the little area covered by freshwaters may help us to better understand species diversification“, specifies Dr. Steffen Pauls, leader of a junior research group at the BiK-F and one of the authors of the review. All aquatic insect groups are the result of the invasion of freshwaters by terrestrial groups: „Although belonging to only 12 orders, aquatic insects may represent more than 50 separate invasions“, explains co-author Dr. Klaas-Douwe Dijkstra from the Naturalis Biodiversity Center Leiden.

The ecology and habitat preferences of many aquatic insect groups have been intensively studied, due to their roles as disease vectors or bioindicators for water quality. But as this research is mostly done in a purely ecological context, these species are underrepresented in evolutionary studies. „And even inside the entomological community, there is often a lack of communication between experts on different groups of insects. So we hope this review will stimulate more exchange and promote interdisciplinary research “, Dijkstra points out.

He who lives in a safe home, doesn’t need to move

Ecological diversity results from a complex set of environmental influences. One important factor affecting diversification is habitat stability. The researchers present a model that explores the correlation of habitat stability, speciation and spreading rates under environmental change of aquatic insects. These processes strongly affect and are intricately linked with the life cycles of aquatic insects, as one and the same species may switch between a non-flying, aquatic immature life stage, and a flying terrestrial adult stage.

Co-author Dr. Michael T. Monaghan, Leibniz-Institute of Freshwater Ecology and Inland Fisheries in Berlin, sums up: „Our model demonstrates a non-linear relationship between habitat stability and dispersal ability of species. Standing waters harbor a larger proportion of species that appear to have evolved the propensity to move to another habitat if conditions change. This can result in the emergence of new species based on geographical diversification. Organisms in running water disperse less, therefore must adapt to changing environmental conditions, which may be another important speciation mechanism. It makes the mixture of habitats an ideal place to study ecological diversification.”

Overview of the research potential of different aquatic insects

The authors summarize and highlight the value of major aquatic insect lineages for biodiversity research.

The diversification of the caddisfly genus Drusus is well suited to investigate speciation taking place at the interface of geographical and ecological diversification. „In the streams and springs of the western Balkan Mountains you can find a whole range of Drusus species. Across the whole mountain range different microendemic species have evolved in every valley– right down to Greece“, says Pauls. „The trigger might be geographical diversification, as waters are isolated by the progressing karst formation“, the entomologist suggests. Different temperature preferences of individual species however, highlight that ecological diversification also plays an important role in the process.

Temperature adaptation is another focus of research interest, e.g. in non-biting midges (Chironomidae). These highly adaptive midges with their plumose antennae comprise tropical and antarctic species and occur in altitudes from 6000 above sea level to 1000 below sea level (even in marine environments). They tolerate temperatures from -20° until +40° Celsius, and their lifecycles last from seven days to seven years.

The review outlines new perspectives in biodiversity research: The combination of phylogenetic methods with the extensive ecological data provides a promising avenue for future research, making aquatic insects highly suitable models for the study of ecological diversification and opening up new paths in science. Pauls concludes: „If we understand the origin of the enormous species richness of aquatic insects, we will be able to better infer how other animal and plant species diversified and hopefully be able to put this knowledge to good use in species conservation”.
For further information please contact:
Dr. Steffen Pauls
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F)
Tel. +49 (0)69 7542 1884
steffen.pauls@senckenberg.de
or
Dr. Julia Krohmer
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F),
Transferstelle
Tel. +49 (0)69 7542 1837
julia.krohmer@senckenberg.de
Publication:
Dijkstra, KDB, Monaghan, MT & SU Pauls (2014): Freshwater Biodiversity and Aquatic Insect Diversification. – In: Annual Review of Entomology, Vol. 59, DOI: 10.1146/annurev-ento-011613-161958
Download press photos:
www.bik-f.de/root/index.php?page_id=32&ID=684&year=0

Sabine Wendler | Senckenberg
Further information:
http://www.senckenberg.de

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>