Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Aquatic Insects – a tremendous potential for research on diversification

Inland waters cover less than 1% of the Earth's surface yet harbor 10% of all known animal species, 60% of them being aquatic insects. Nearly 100,000 species from 12 orders spend one or more life stages in freshwater.

Still today, little is known on how this remarkable diversity arose. Scientists of the Biodiversity and Climate Research Centre (BiK-F), the Naturalis Biodiversity Center in Leiden and the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) in Berlin therefore investigated the potential of aquatic insects for research on diversification. The results have now been published in the renowned Annual Review for Entomology.

A typical karst spring and stream in the western Balkan Peninsula that is home to a microendemic caddisfly species of the genus Drusus.

© Ana Previsic

Freshwaters cover less than 1% of the Earth’s surface, but harbour 10% of all animal. Six out of ten of currently known species are insects. In a recently published review an international team of researchers from the Biodiversity and Climate Research Centre (BiK-F), the Biodiversity Center in Leiden, and the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) in Berlin analyzed how studying the vast diversity of aquatic insects may contribute to a better understanding of diversification processes.

„Analyzing the reasons behind the disproportionately high degree of aquatic insect diversity relative to the little area covered by freshwaters may help us to better understand species diversification“, specifies Dr. Steffen Pauls, leader of a junior research group at the BiK-F and one of the authors of the review. All aquatic insect groups are the result of the invasion of freshwaters by terrestrial groups: „Although belonging to only 12 orders, aquatic insects may represent more than 50 separate invasions“, explains co-author Dr. Klaas-Douwe Dijkstra from the Naturalis Biodiversity Center Leiden.

The ecology and habitat preferences of many aquatic insect groups have been intensively studied, due to their roles as disease vectors or bioindicators for water quality. But as this research is mostly done in a purely ecological context, these species are underrepresented in evolutionary studies. „And even inside the entomological community, there is often a lack of communication between experts on different groups of insects. So we hope this review will stimulate more exchange and promote interdisciplinary research “, Dijkstra points out.

He who lives in a safe home, doesn’t need to move

Ecological diversity results from a complex set of environmental influences. One important factor affecting diversification is habitat stability. The researchers present a model that explores the correlation of habitat stability, speciation and spreading rates under environmental change of aquatic insects. These processes strongly affect and are intricately linked with the life cycles of aquatic insects, as one and the same species may switch between a non-flying, aquatic immature life stage, and a flying terrestrial adult stage.

Co-author Dr. Michael T. Monaghan, Leibniz-Institute of Freshwater Ecology and Inland Fisheries in Berlin, sums up: „Our model demonstrates a non-linear relationship between habitat stability and dispersal ability of species. Standing waters harbor a larger proportion of species that appear to have evolved the propensity to move to another habitat if conditions change. This can result in the emergence of new species based on geographical diversification. Organisms in running water disperse less, therefore must adapt to changing environmental conditions, which may be another important speciation mechanism. It makes the mixture of habitats an ideal place to study ecological diversification.”

Overview of the research potential of different aquatic insects

The authors summarize and highlight the value of major aquatic insect lineages for biodiversity research.

The diversification of the caddisfly genus Drusus is well suited to investigate speciation taking place at the interface of geographical and ecological diversification. „In the streams and springs of the western Balkan Mountains you can find a whole range of Drusus species. Across the whole mountain range different microendemic species have evolved in every valley– right down to Greece“, says Pauls. „The trigger might be geographical diversification, as waters are isolated by the progressing karst formation“, the entomologist suggests. Different temperature preferences of individual species however, highlight that ecological diversification also plays an important role in the process.

Temperature adaptation is another focus of research interest, e.g. in non-biting midges (Chironomidae). These highly adaptive midges with their plumose antennae comprise tropical and antarctic species and occur in altitudes from 6000 above sea level to 1000 below sea level (even in marine environments). They tolerate temperatures from -20° until +40° Celsius, and their lifecycles last from seven days to seven years.

The review outlines new perspectives in biodiversity research: The combination of phylogenetic methods with the extensive ecological data provides a promising avenue for future research, making aquatic insects highly suitable models for the study of ecological diversification and opening up new paths in science. Pauls concludes: „If we understand the origin of the enormous species richness of aquatic insects, we will be able to better infer how other animal and plant species diversified and hopefully be able to put this knowledge to good use in species conservation”.
For further information please contact:
Dr. Steffen Pauls
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F)
Tel. +49 (0)69 7542 1884
Dr. Julia Krohmer
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F),
Tel. +49 (0)69 7542 1837
Dijkstra, KDB, Monaghan, MT & SU Pauls (2014): Freshwater Biodiversity and Aquatic Insect Diversification. – In: Annual Review of Entomology, Vol. 59, DOI: 10.1146/annurev-ento-011613-161958
Download press photos:

Sabine Wendler | Senckenberg
Further information:

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>