Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aquatic Insects – a tremendous potential for research on diversification

05.02.2014
Inland waters cover less than 1% of the Earth's surface yet harbor 10% of all known animal species, 60% of them being aquatic insects. Nearly 100,000 species from 12 orders spend one or more life stages in freshwater.

Still today, little is known on how this remarkable diversity arose. Scientists of the Biodiversity and Climate Research Centre (BiK-F), the Naturalis Biodiversity Center in Leiden and the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) in Berlin therefore investigated the potential of aquatic insects for research on diversification. The results have now been published in the renowned Annual Review for Entomology.


A typical karst spring and stream in the western Balkan Peninsula that is home to a microendemic caddisfly species of the genus Drusus.

© Ana Previsic

Freshwaters cover less than 1% of the Earth’s surface, but harbour 10% of all animal. Six out of ten of currently known species are insects. In a recently published review an international team of researchers from the Biodiversity and Climate Research Centre (BiK-F), the Biodiversity Center in Leiden, and the Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB) in Berlin analyzed how studying the vast diversity of aquatic insects may contribute to a better understanding of diversification processes.

„Analyzing the reasons behind the disproportionately high degree of aquatic insect diversity relative to the little area covered by freshwaters may help us to better understand species diversification“, specifies Dr. Steffen Pauls, leader of a junior research group at the BiK-F and one of the authors of the review. All aquatic insect groups are the result of the invasion of freshwaters by terrestrial groups: „Although belonging to only 12 orders, aquatic insects may represent more than 50 separate invasions“, explains co-author Dr. Klaas-Douwe Dijkstra from the Naturalis Biodiversity Center Leiden.

The ecology and habitat preferences of many aquatic insect groups have been intensively studied, due to their roles as disease vectors or bioindicators for water quality. But as this research is mostly done in a purely ecological context, these species are underrepresented in evolutionary studies. „And even inside the entomological community, there is often a lack of communication between experts on different groups of insects. So we hope this review will stimulate more exchange and promote interdisciplinary research “, Dijkstra points out.

He who lives in a safe home, doesn’t need to move

Ecological diversity results from a complex set of environmental influences. One important factor affecting diversification is habitat stability. The researchers present a model that explores the correlation of habitat stability, speciation and spreading rates under environmental change of aquatic insects. These processes strongly affect and are intricately linked with the life cycles of aquatic insects, as one and the same species may switch between a non-flying, aquatic immature life stage, and a flying terrestrial adult stage.

Co-author Dr. Michael T. Monaghan, Leibniz-Institute of Freshwater Ecology and Inland Fisheries in Berlin, sums up: „Our model demonstrates a non-linear relationship between habitat stability and dispersal ability of species. Standing waters harbor a larger proportion of species that appear to have evolved the propensity to move to another habitat if conditions change. This can result in the emergence of new species based on geographical diversification. Organisms in running water disperse less, therefore must adapt to changing environmental conditions, which may be another important speciation mechanism. It makes the mixture of habitats an ideal place to study ecological diversification.”

Overview of the research potential of different aquatic insects

The authors summarize and highlight the value of major aquatic insect lineages for biodiversity research.

The diversification of the caddisfly genus Drusus is well suited to investigate speciation taking place at the interface of geographical and ecological diversification. „In the streams and springs of the western Balkan Mountains you can find a whole range of Drusus species. Across the whole mountain range different microendemic species have evolved in every valley– right down to Greece“, says Pauls. „The trigger might be geographical diversification, as waters are isolated by the progressing karst formation“, the entomologist suggests. Different temperature preferences of individual species however, highlight that ecological diversification also plays an important role in the process.

Temperature adaptation is another focus of research interest, e.g. in non-biting midges (Chironomidae). These highly adaptive midges with their plumose antennae comprise tropical and antarctic species and occur in altitudes from 6000 above sea level to 1000 below sea level (even in marine environments). They tolerate temperatures from -20° until +40° Celsius, and their lifecycles last from seven days to seven years.

The review outlines new perspectives in biodiversity research: The combination of phylogenetic methods with the extensive ecological data provides a promising avenue for future research, making aquatic insects highly suitable models for the study of ecological diversification and opening up new paths in science. Pauls concludes: „If we understand the origin of the enormous species richness of aquatic insects, we will be able to better infer how other animal and plant species diversified and hopefully be able to put this knowledge to good use in species conservation”.
For further information please contact:
Dr. Steffen Pauls
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F)
Tel. +49 (0)69 7542 1884
steffen.pauls@senckenberg.de
or
Dr. Julia Krohmer
LOEWE Biodiversität und Klima Forschungszentrum (BiK-F),
Transferstelle
Tel. +49 (0)69 7542 1837
julia.krohmer@senckenberg.de
Publication:
Dijkstra, KDB, Monaghan, MT & SU Pauls (2014): Freshwater Biodiversity and Aquatic Insect Diversification. – In: Annual Review of Entomology, Vol. 59, DOI: 10.1146/annurev-ento-011613-161958
Download press photos:
www.bik-f.de/root/index.php?page_id=32&ID=684&year=0

Sabine Wendler | Senckenberg
Further information:
http://www.senckenberg.de

More articles from Life Sciences:

nachricht About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed
10.02.2016 | Universität Ulm

nachricht Chemical cages: New technique advances synthetic biology
10.02.2016 | Arizona State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed

10.02.2016 | Life Sciences

The most accurate optical single-ion clock worldwide

10.02.2016 | Earth Sciences

Absorbing acoustics with soundless spirals

10.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>