Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

APS Releases New Technical Assessment: Direct Air Capture of CO2 with Chemicals

10.05.2011
The American Physical Society has released a new assessment — Direct Air Capture of CO2 with Chemicals — to better inform the scientific community on the technical aspects of removing carbon dioxide from the atmosphere.

In systems achieving direct air capture (DAC) of carbon dioxide (CO2), ambient air flows over a chemical sorbent, either liquid or solid, that selectively removes the CO2. The CO2 is then released as a concentrated stream for disposal or reuse, while the sorbent is regenerated and the CO2-depleted air is returned to the atmosphere.

DAC is now included in discussions of climate change policy because it is among the few strategies that might lower the atmospheric concentration of CO2 to reduce the negative impacts of climate change. However, the intent of this assessment is not to make specific policy recommendations.

The assessment is the outcome of a two-year study conducted by a 13-member committee whose members work in industry, academia, and national and government laboratories. It concludes that DAC would play a very limited role in a coherent CO2 mitigation strategy for many decades. Deployment of DAC would not be pursued aggressively until the world has largely eliminated centralized sources of CO2 emissions, especially at coal and natural gas power plants, either by substitution of non-fossil alternatives or by capture of nearly all of their CO2 emissions. For example, it makes little sense to ignore the emissions of CO2 in the flue gas from a coal power plant while removing CO2 from ambient air where it is 300 times more dilute.

The assessment estimates that removing CO2 from the flue gas of a coal power plant would be seven or more times less expensive, relative to a benchmark DAC system that, in the assessment committee’s judgment, is well enough described in the published literature that its costs can be estimated today. The benchmark system removes 1 MtCO2/yr from the atmosphere. Applying a simplified costing methodology used in industry for early-stage projects, its avoided cost is estimated to be at least $600/tCO2. Using the same methodology, the estimated avoided cost for “post-combustion capture” of CO2 from the flue gas of a reference coal power plant is about $80/tCO2.

A variety of science and engineering issues will determine the ultimate feasibility and competitiveness of DAC. If DAC were to ever have a substantial role in removing CO2 from the atmosphere, it would need to be much less costly than the benchmark system considered in the report. Today, few relevant experimental results have been published, and no demonstration or pilot-scale DAC system has yet been deployed. Improved designs would involve alternative strategies for bringing air into contact with chemicals, new chemistries for sorption and regeneration, materials that can operate effectively and efficiently over thousands of consecutive cycles, and low-carbon energy sources for power and heat in order to avoid emitting more than one CO2 molecule into the atmosphere for each CO2 molecule captured. From what is now known, it would not be wise to delay dealing with climate change on the grounds that at some future time DAC could be available as a significant compensating strategy.

Robert Socolow (Princeton University) served as a co-chair of the DAC study.

Supporting Information
The physical scale of the air contactor in any DAC system is a formidable challenge. A contactor through which air flows at two meters per second and that removes half of the CO2 from the contacted air will capture about 20 tons of CO2 per year for each square meter of frontal area. A 1,000-megawatt coal power plant emits about 6 million metric tons of CO2 per year, and to remove CO2 from the atmosphere as fast as this coal plant emits CO2, such a system would have a total length of about 30 kilometers if it were based on structures 10-meters high. Large quantities of construction materials and chemicals would be required.

The assessment did not address challenges related to dealing with CO2 after capture. The storage part of CO2 capture and storage (CCS) must be feasible at huge scale for direct air capture to be viable.

Understanding the costs of direct air capture will illuminate a ceiling on costs for mitigation and adaptation. When the cost of some mitigation or adaptation measure exceeds the cost of CO2 removal from the atmosphere, it will be more cost-effective to remove the carbon from the atmosphere after it has been emitted than to prevent its emission in the first place. Some mitigation options that today appear to be very costly may never be needed if operable DAC systems become available.

When a low-carbon energy source can be introduced into a region where centralized high-carbon sources are still present, it will be more cost-effective to eliminate a high-carbon source rather than to provide low-carbon energy for a compensating direct air capture system.

Direct air capture may have a role to play eventually in countering some decentralized CO2 emissions, such as emissions from buildings and vehicles, which prove expensive to reduce by other means. However, for at least the next few decades, unless there are dramatic cost reductions, compensating for decentralized emissions via direct air capture can be expected to be substantially more expensive than one or another of the currently available alternatives, including 1) substantial improvement of end-use efficiency, 2) electrification accompanied by decarbonization of electricity, and 3) substitution of low-carbon fuel, biologically derived or produced in some other way.

Direct air capture could at best be deployed slowly. For example, on its own, DAC might be able to reduce the CO2 concentration by 50 parts per million (ppm) over a century (say, from 500 ppm in 2100 to 450 ppm in 2200). However DAC is not at all matched to the task of reacting quickly to an abrupt climate emergency, which could require reducing the concentration by hundreds of ppm in a decade. The required rates of construction of DAC-related facilities above and below ground to deal with a climate emergency are implausible.

If humanity someday chooses to reduce the atmospheric CO2 concentration gradually, direct air capture would compete with two terrestrial biological strategies: 1) afforestation, reforestation, and other measures that store additional carbon on the land, and 2) capture of CO2 from bioenergy facilities, such as biomass power plants.

About APS
The American Physical Society (www.aps.org) is a non-profit membership organization working to advance and diffuse the knowledge of physics through its outstanding research journals, scientific meetings, and education, outreach, advocacy and international activities. APS represents 48,000 members, including physicists in academia, national laboratories and industry in the United States and throughout the world. Society offices are located in College Park, MD (Headquarters), Ridge, NY, and Washington, DC.

Tawanda W. Johnson | EurekAlert!
Further information:
http://www.aps.org

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>