Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New approach to Alzheimer's therapy

02.08.2010
DZNE and LMU researchers identify key target molecule

The brains of Alzheimer patients have high accumulations of the material beta-amyloid, which appear in the form of plaques. The precursors of these plaques are believed to be the underlying cause of the nerve cell loss that leads to the disruptions in memory that characterize Alzheimer's disease.

The main aim of many Alzheimer therapies is therefore to inhibit the formation of beta-amyloid. Since beta-amyloid is cleaved from the so-called amyloid precursor protein (APP), scientists have focused on stopping the two enzymes that attack the precursor protein. These act like molecular scissors and cut out the beta-amyloid fragment. Blocking these scissors precludes the formation of beta-amyloid.

DZNE and LMU researchers have succeeded in identifying an enzyme known as alpha secretase, which cleaves the amyloid precursor protein (APP) without forming beta-amyloid. Up to this point three different candidates for this function had been under consideration, but the research team has now been able to show that the enzyme ADAM10 alone is responsible for the specific cleavage. Dr. Stefan Lichtenthaler and his team developed highly specific antibodies that can identify the different cleavage products of the precursor protein in the brain cells of mice and in human cell cultures. Using a special technique called RNA interference, the researchers managed to block each of the three genes that code for the three ADAM enzymes under suspicion. An analysis of the cleavage products revealed that the ADAM10 gene was the only one able to prevent the formation of beta-amyloids. They confirmed their results using mass spectrometry.

"In ADAM10 we have identified a target molecule that plays a central role in the development of the molecular processes in Alzheimer's disease. We know that ADAM10 is less active in Alzheimer patients," says Dr. Lichtenthaler. When ADAM10 is less active, the precursor protein is more likely to be cleaved in a way that promotes the formation of beta-amyloids.

"It is possible that less ADAM10 activity could increase susceptibility to Alzheimer's disease. If that is the case, stimulating ADAM10 could be an important mechanism for therapy. But our antibodies also open up new possibilities for diagnosing and preventing the disease," says Lichtenthaler. The antibodies could be used to measure ADAM10 activity in spinal fluid and, by extension, identify persons who may have an increased risk of developing Alzheimer's disease. A series of experiments to examine this possibility is already underway.

Publication:

ADAM10 is the Physiologically Relevant, Constitutive Alpha-Secretase of the Amyloid Precursor Protein in Primary Neurons.

Peer-Hendrik Kuhn, Huanhuan Wang, Bastian Dislich, Alessio Colombo, Ulrike Zeitschel, Joachim W. Ellwart, Elisabeth Kremmer, Steffen Roßner, and Stefan F. Lichtenthaler, EMBO Journal, published online, 30 July 2010 doi:10.1038/emboj.2010.167

Contact:

Dr. Stefan Lichtenthaler
German Centre for Neurodegenerative Diseases (DZNE)
Tel.: +49 89 2180 754 53
E-mail: stefan.lichtenthaler@dzne.de
Sonja Jülich-Abbas
German Centre for Neurodegenerative Diseases (DZNE)
Head of PR
Tel.: +49 228 4330 2260
Mobile: +49 172 2838 930
E-mail: sonja.juelich-abbas@dzne.de

Sonja Juelich-Abbas | EurekAlert!
Further information:
http://www.dzne.de

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>