Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Appetite suppressant for scavenger cells

15.11.2012
Influenza curbs part of the immune system and abets bacterial infections

When infected with influenza, the body becomes an easy target for bacteria. The flu virus alters the host’s immune system and compromises its capacity to effectively fight off bacterial infections. Now, a team of immunologists at the Helmholtz Centre for Infection Research (HZI) and cooperation partners has discovered that an immune system molecule called TLR7 is partly to blame. The molecule recognizes the viral genome – and then signals scavenger cells of the immune system to ingest fewer bacteria. The researchers published their findings in the Journal of Innate Immunity.


A scavenger cell of the immune system ingests bacteria (shown in green). During an influenza infection, the macrophages’ appetite is curbed.
Manfred Rohde/HZI

The flu is not just a seasonal illness during the winter months. In the past, there have been several flu pandemics that have claimed the lives of millions. By now, we know that during the course of the disease, many people not only get sick from the flu itself but also from bacterial pathogens like the much-feared pneumococci, the bacteria causing pneumonia.

In many cases, such “superinfections” can cause the disease to take a turn for the worse. In fact, during the Spanish Flu of 1918 to 1920, they were responsible for the majority of deaths. Why an infection with the flu virus increases the risk for superinfections is still poorly understood. Now, a group of scientists from HZI, the University Hospital of the Otto von Guericke University Magdeburg, the Essen University Hospital, the Karolinska Institute in Stockholm, Sweden, as well as further research institutions have discovered one more detail on how the virus manipulates the immune system.

They focused on TLR7, a molecule that is found in different cells of the body. TLR7 is capable of recognizing viral genetic material. As it turns out, TLR7 has an unwanted side effect, too: During a flu infection, it appears to undermine the body’s innate ability to fight off bacteria, thereby increasing the chance of a superinfection. The researchers made their discovery when they examined how superinfected mice were dealing with the bacterium Streptococcus pneumoniae, the pneumonia pathogen. The scientists colored the bacteria and measured how many of them were taken up by scavenger cells of the immune system called macrophages. The macrophages of TLR7-deficient mice had a bigger appetite and eliminated larger numbers of bacteria when infected with the flu than those of mice with the intact viral sensor. “Without TLR7, it takes longer before influenza-infected mice reach the critical point where they are no longer able to cope with the bacterial infection,” explains Prof. Dunja Bruder, head of HZI’s “Immune Regulation Group” and professor of infection immunology at the University Hospital Magdeburg.

The scientists also have an idea about how TLR7 may be curtailing the scavenger cells’ appetite: Whenever the immune system recognizes a virus, it gets other immune cells to produce a signaling substance called IFN gamma. It is already known that this substance inhibits macrophages in the lungs, causing them to eliminate fewer bacteria. As part of their study, the researchers discovered another indication of this special relationship: In TLR7-deficient animals they found smaller quantities of the IFN gamma messenger substance. The consequence might be that macrophages have a bigger appetite and that therefore bacterial entry into the bloodstream is delayed.

“Our results confirm that in the long run the flu virus suppresses the body’s ability to defend itself against bacteria. Presumably, this is an unwanted side effect of the viral infection,” speculates Dr. Stegemann-Koniszewski, the study’s first author.

“Unfortunately, it is rather difficult to intervene therapeutically. At first glance, it seems obvious to inhibit TLR7 during influenza so that the macrophages are actually able to get rid of the bacteria. However, this could have unforeseen repercussions as TLR7 and IFN gamma are both part of a tightly regulated immunological network,” explains Prof. Matthias Gunzer, former research group leader at the HZI and currently a professor at Essen University Hospital.

Even if a lack of TLR7 cannot by itself ward off a bacterial superinfection, the researchers’ findings could still lead to highly promising potential clinical applications. “Missing TLR7 delays the spread of bacteria via the bloodstream,” says Bruder. “Even if we are only talking about a relatively brief window of time, this might be our critical opportunity for keeping a seriously ill patient alive. The more time doctors have to choose the right antibiotic for their patient, the better the chances of a successful treatment.”

Original Publication
Sabine Stegemann-Koniszewski, Marcus Gereke, Sofia Orrskog, Stefan Lienenklaus, Bastian Pasche, Sophie R. Bader, Achim D. Gruber, Shizuo Akira, Siegfried Weiss, Birgitta Henriques-Normark, Dunja Bruder*, Matthias Gunzer* (* These authors contributed equally to the study.)
TLR7 contributes to the rapid progression but not to the overall fatal outcome of secondary pneumococcal disease following influenza A virus infection
Journal of Innate Immunity, 2012
DOI: 10.1159/000345112
The research group "Immune Regulation" at the HZI explores the immune system under extreme situations. These can be parallel infections with different pathogens or the erroneous attack of parts of the own body by the immune system.
The Helmholtz Centre for Infection Research (HZI):
The Helmholtz Centre for Infection Research contributes to the achievement of the goals of the Helmholtz Association of German Research Centres and to the successful implementation of the research strategy of the German Federal Government. The goal is to meet the challenges in infection research and make a contribution to public health with new strategies for the prevention and therapy of infectious diseases.

http://www.helmholtz-hzi.de

Dr. Birgit Manno | Helmholtz-Zentrum
Further information:
http://www.helmholtz-hzi.de/en/news_events/news/view/article/complete/appetite_suppressant_for_scavenger_cells/

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>