Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Appearance of HIV in the early warning system – camouflage uncovered

09.12.2011
While the human immunodeficiency virus replicates extremely rapidly in some of the human immune cells, other cells remain unaffected. Researchers of the Paul-Ehrlich-Institut have been able to identify how monocytes protect themselves from an HIV infection.

In this context, the protein SAMHD1 plays a key role. In addition, the investigators were able to show by means of blood samples from patients with a rare congenital disease that the absence of SAMHD1 makes early detection of the virus possible via the immune system. PLoS Pathogens reports on the research results in its online issue of December 8, 2012 (CET: December 9, 2012, 01.00)


Monocytes infected with HIV-1 (yellow-green) and non-infected monocytes (red). The cells originate from patients with the rare Aicardi-Goutières syndrome and were infected in cell culture. These cells do not have a functioning SAMHD1 and can therefore be infected by HIV-1.
Image credit: Prof. Viviana Simon, Department of Microbiology, Mount Sinai School of Medicine, New York

The generally feared human immunodeficiency virus very efficiently infects T lymphocytes, a special cell group of the immune system, in the human organism. On the other hand, myeloid blood cells, such as dendritic cells, monocytes, and partly macrophages, which also serve to support immune responses, provide natural protection against HIV-1. Researchers at the Paul-Ehrlich-Institut (PEI) under the supervision of Dr Egbert Flory, head of the section "Tissue Engineering and Somatic cell therapeutics" in the Division Medical Biotechnology and research group leader Professor Renate König have now proved that the cellular protein SAMHD1 ("SAM domain and HD domain containing protein 1") is responsible if monocytes are not infected by the human immunodeficiency virus.

This 'protective function' of SAMHD1 can, however, be switched off in the non-infectable cells, if viral protein X (Vpx) is inserted into the cells, as the scientists at the PEI were able to show. Vpx interacts with SAMHD1 which causes the latter to disintegrate. As a result, the previously HIV-1-resistant cells become infectable. In further experiments, the researchers used a mutated Vpx variant. This variant is no longer able to bind to SAMHD1 and is thus no longer able to induce disintegration of the protein. In these experiments, no infection developed. These experiments support previously published findings of two other research teams who described the significance of SAMHD2 as restrictive factor in an HIV-1-infection for dendritic cells and macrophages.

The researchers of the PEI went one step further: In collaboration with Professor Frank Rutsch, University Hospital Münster, and researchers of the Mount Sinai School of Medicine at New York under the supervision of Professor Viviana Simon and Professor Ana Fernandez-Sesma, they investigated how monocytes of patients with the very rare Aicardi-Goutières syndrome reacted to the human immunodeficiency virus.

Due to a mutation, the cells of the patient suffering from this serious congenital disease lack the functional SMHD1 protein: "While monocytes normally cannot be infected by HIV at all, these cells revealed massive replication of the virus. A very important finding, above all, is that, here too, a first early response of the immune cells to the virus was recognisable", explained Dr König. While in the case of influenza viruses, a rapid first immune response of the infected cells is induced with interferon release, because the viral RNA is recognised as foreign when entering the cell, the immunodeficiency virus escapes this early response phase unnoticed.

"This finding is of great significance for the development of vaccines against HIV infections", emphasised Professor Klaus Cichutek, president of the PEI. "Previous investigations have been of little success because no suitable immune response was induced by the potential vaccine candidates. Understanding the early camouflage mechanism of the virus may help us identify new approaches to finding a better immune response". In addition, with SAMHD1, an important key to a system has been found which protects cells from an HIV infection.

Original publications:
Berger A, Sommer AFR, Zwarg J, Hamdorf M, Welzel K, Esly N, Sylvia Panitz S, Reuter A, Ramos I, Jatiani A, Mulder LCF, Fernandez-Sesma A, Rutsch F, Simon V, König R, Flory E. SAMHD1-deficient CD14+ cells from individuals with Aicardi-Goutières syndrome are highly susceptible to HIV-1 infection. PLoS Pathog, December 8, 2012

Dr. Susanne Stöcker | idw
Further information:
http://www.pei.de
http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1002425

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>