Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Appearance of HIV in the early warning system – camouflage uncovered

09.12.2011
While the human immunodeficiency virus replicates extremely rapidly in some of the human immune cells, other cells remain unaffected. Researchers of the Paul-Ehrlich-Institut have been able to identify how monocytes protect themselves from an HIV infection.

In this context, the protein SAMHD1 plays a key role. In addition, the investigators were able to show by means of blood samples from patients with a rare congenital disease that the absence of SAMHD1 makes early detection of the virus possible via the immune system. PLoS Pathogens reports on the research results in its online issue of December 8, 2012 (CET: December 9, 2012, 01.00)


Monocytes infected with HIV-1 (yellow-green) and non-infected monocytes (red). The cells originate from patients with the rare Aicardi-Goutières syndrome and were infected in cell culture. These cells do not have a functioning SAMHD1 and can therefore be infected by HIV-1.
Image credit: Prof. Viviana Simon, Department of Microbiology, Mount Sinai School of Medicine, New York

The generally feared human immunodeficiency virus very efficiently infects T lymphocytes, a special cell group of the immune system, in the human organism. On the other hand, myeloid blood cells, such as dendritic cells, monocytes, and partly macrophages, which also serve to support immune responses, provide natural protection against HIV-1. Researchers at the Paul-Ehrlich-Institut (PEI) under the supervision of Dr Egbert Flory, head of the section "Tissue Engineering and Somatic cell therapeutics" in the Division Medical Biotechnology and research group leader Professor Renate König have now proved that the cellular protein SAMHD1 ("SAM domain and HD domain containing protein 1") is responsible if monocytes are not infected by the human immunodeficiency virus.

This 'protective function' of SAMHD1 can, however, be switched off in the non-infectable cells, if viral protein X (Vpx) is inserted into the cells, as the scientists at the PEI were able to show. Vpx interacts with SAMHD1 which causes the latter to disintegrate. As a result, the previously HIV-1-resistant cells become infectable. In further experiments, the researchers used a mutated Vpx variant. This variant is no longer able to bind to SAMHD1 and is thus no longer able to induce disintegration of the protein. In these experiments, no infection developed. These experiments support previously published findings of two other research teams who described the significance of SAMHD2 as restrictive factor in an HIV-1-infection for dendritic cells and macrophages.

The researchers of the PEI went one step further: In collaboration with Professor Frank Rutsch, University Hospital Münster, and researchers of the Mount Sinai School of Medicine at New York under the supervision of Professor Viviana Simon and Professor Ana Fernandez-Sesma, they investigated how monocytes of patients with the very rare Aicardi-Goutières syndrome reacted to the human immunodeficiency virus.

Due to a mutation, the cells of the patient suffering from this serious congenital disease lack the functional SMHD1 protein: "While monocytes normally cannot be infected by HIV at all, these cells revealed massive replication of the virus. A very important finding, above all, is that, here too, a first early response of the immune cells to the virus was recognisable", explained Dr König. While in the case of influenza viruses, a rapid first immune response of the infected cells is induced with interferon release, because the viral RNA is recognised as foreign when entering the cell, the immunodeficiency virus escapes this early response phase unnoticed.

"This finding is of great significance for the development of vaccines against HIV infections", emphasised Professor Klaus Cichutek, president of the PEI. "Previous investigations have been of little success because no suitable immune response was induced by the potential vaccine candidates. Understanding the early camouflage mechanism of the virus may help us identify new approaches to finding a better immune response". In addition, with SAMHD1, an important key to a system has been found which protects cells from an HIV infection.

Original publications:
Berger A, Sommer AFR, Zwarg J, Hamdorf M, Welzel K, Esly N, Sylvia Panitz S, Reuter A, Ramos I, Jatiani A, Mulder LCF, Fernandez-Sesma A, Rutsch F, Simon V, König R, Flory E. SAMHD1-deficient CD14+ cells from individuals with Aicardi-Goutières syndrome are highly susceptible to HIV-1 infection. PLoS Pathog, December 8, 2012

Dr. Susanne Stöcker | idw
Further information:
http://www.pei.de
http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1002425

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>