Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Appearance of HIV in the early warning system – camouflage uncovered

09.12.2011
While the human immunodeficiency virus replicates extremely rapidly in some of the human immune cells, other cells remain unaffected. Researchers of the Paul-Ehrlich-Institut have been able to identify how monocytes protect themselves from an HIV infection.

In this context, the protein SAMHD1 plays a key role. In addition, the investigators were able to show by means of blood samples from patients with a rare congenital disease that the absence of SAMHD1 makes early detection of the virus possible via the immune system. PLoS Pathogens reports on the research results in its online issue of December 8, 2012 (CET: December 9, 2012, 01.00)


Monocytes infected with HIV-1 (yellow-green) and non-infected monocytes (red). The cells originate from patients with the rare Aicardi-Goutières syndrome and were infected in cell culture. These cells do not have a functioning SAMHD1 and can therefore be infected by HIV-1.
Image credit: Prof. Viviana Simon, Department of Microbiology, Mount Sinai School of Medicine, New York

The generally feared human immunodeficiency virus very efficiently infects T lymphocytes, a special cell group of the immune system, in the human organism. On the other hand, myeloid blood cells, such as dendritic cells, monocytes, and partly macrophages, which also serve to support immune responses, provide natural protection against HIV-1. Researchers at the Paul-Ehrlich-Institut (PEI) under the supervision of Dr Egbert Flory, head of the section "Tissue Engineering and Somatic cell therapeutics" in the Division Medical Biotechnology and research group leader Professor Renate König have now proved that the cellular protein SAMHD1 ("SAM domain and HD domain containing protein 1") is responsible if monocytes are not infected by the human immunodeficiency virus.

This 'protective function' of SAMHD1 can, however, be switched off in the non-infectable cells, if viral protein X (Vpx) is inserted into the cells, as the scientists at the PEI were able to show. Vpx interacts with SAMHD1 which causes the latter to disintegrate. As a result, the previously HIV-1-resistant cells become infectable. In further experiments, the researchers used a mutated Vpx variant. This variant is no longer able to bind to SAMHD1 and is thus no longer able to induce disintegration of the protein. In these experiments, no infection developed. These experiments support previously published findings of two other research teams who described the significance of SAMHD2 as restrictive factor in an HIV-1-infection for dendritic cells and macrophages.

The researchers of the PEI went one step further: In collaboration with Professor Frank Rutsch, University Hospital Münster, and researchers of the Mount Sinai School of Medicine at New York under the supervision of Professor Viviana Simon and Professor Ana Fernandez-Sesma, they investigated how monocytes of patients with the very rare Aicardi-Goutières syndrome reacted to the human immunodeficiency virus.

Due to a mutation, the cells of the patient suffering from this serious congenital disease lack the functional SMHD1 protein: "While monocytes normally cannot be infected by HIV at all, these cells revealed massive replication of the virus. A very important finding, above all, is that, here too, a first early response of the immune cells to the virus was recognisable", explained Dr König. While in the case of influenza viruses, a rapid first immune response of the infected cells is induced with interferon release, because the viral RNA is recognised as foreign when entering the cell, the immunodeficiency virus escapes this early response phase unnoticed.

"This finding is of great significance for the development of vaccines against HIV infections", emphasised Professor Klaus Cichutek, president of the PEI. "Previous investigations have been of little success because no suitable immune response was induced by the potential vaccine candidates. Understanding the early camouflage mechanism of the virus may help us identify new approaches to finding a better immune response". In addition, with SAMHD1, an important key to a system has been found which protects cells from an HIV infection.

Original publications:
Berger A, Sommer AFR, Zwarg J, Hamdorf M, Welzel K, Esly N, Sylvia Panitz S, Reuter A, Ramos I, Jatiani A, Mulder LCF, Fernandez-Sesma A, Rutsch F, Simon V, König R, Flory E. SAMHD1-deficient CD14+ cells from individuals with Aicardi-Goutières syndrome are highly susceptible to HIV-1 infection. PLoS Pathog, December 8, 2012

Dr. Susanne Stöcker | idw
Further information:
http://www.pei.de
http://www.plospathogens.org/article/info:doi/10.1371/journal.ppat.1002425

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>