Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Apothecary Cabinet under the Skin

19.02.2016

New method enables storage and controlled release of pharmaceutical substances in the body

Thanks to an invention by Freiburg scientists, it is now possible to dispense precise dosages of drugs locally in the body. A junior research group from the University of Freiburg’s Cluster of Excellence BrainLinks–BrainTools led by Dr. Maria Asplund and her doctoral candidate Christian Böhler has provided the foundations for a new molecular storage method that could find its way into clinical practice in the foreseeable future.


The storage layer (marked green) can be used to store drugs; the surface layer (marked blue) enables their release in controlled dosages.

Source: Christian Böhler/University of Freiburg

The microsystems engineers, electrical engineers, and materials scientists have succeeded in creating a compound of organic and inorganic materials that is particularly well suited for the compact storage of pharmacologically active substances. The study was conducted in cooperation with a team from the Laboratory for Nanotechnology under Prof. Dr. Margit Zacharias from the Department of Microsystems Engineering (IMTEK) of the University of Freiburg and was published in the journal Scientific Reports.

The starting point for producing the storage system was the conversion of a synthetic material from a liquid to a solid state. The researchers succeeded for the first time ever in using so-called atomic layer deposition for a process of this kind. This technique involves applying gases to a synthetic material. The gases penetrate into the molecular structure of the material and strengthen it from the inside.

The team used the polymer polyethylene glycol as the starting material. It reacts with zinc oxide in the deposition process to form an organic–inorganic hybrid compound whose molecular structure is suitable for storing drugs or other similar substances. An additional advantage of this material is the fact that it is water-soluble.

This makes it suitable for use as a drug carrier, since it is easy to release the substances stored in it again. For dispensing the doses precisely, for example for transport into the bloodstream, the polymer PEDOT is required. This is one of the main emphases of Asplund’s group: “Stated in simplified terms, the polymer works like a net with holes that open when a negative charge is applied and close when a positive charge is applied. This allows the molecules to be released in controlled dosages,” explains Böhler. It is enough to apply two thin films of the polymer to the surface of the hybrid material to ensure that the storage system is sufficiently stable and can precisely control the release of the stored substances.

The team from IMTEK developed a novel technology to improve the storage system: Similar systems produced previously were comparatively less compact, had a smaller storage volume, could not store molecules with different charges, and sometimes caused unintended chemical reactions. The researchers at IMTEK demonstrated in experiments with the substance fluorescein that the multilayered system exhibits ideal properties for dispensing precise doses of a broad spectrum of related molecules at a particular point over a particular period of time. In future experiments, the group aims to determine whether several different molecules can be stored at the same time or in neighboring chambers.

The technology would be particularly useful for so-called lab-on-a-chip methods, which involve the exchange and analysis of substances in a very small space. It could also be used in cancer treatment, for instance to release drugs directly onto a tumor from a reservoir under the skin. Researchers at IMTEK have already conducted tests on cell cultures indicating that the human body would be capable of accommodating an implant of this kind without complications.

Original publication:
C. Böhler, F. Güder, U. M. Kücükbayrak, M. Zacharias & M. Asplund (2016): A Simple Approach for Molecular Controlled Release based on Atomic Layer Deposition Hybridized Organic-Inorganic Layers, In: Scientific Reports 6, pp. 1–11. http://www.nature.com/articles/srep19574

Contact:
Christian Böhler
BioEPIC Junior Research Group
Laboratory for Biomedical Microtechnology
Department of Microsystems Engineering – IMTEK
University of Freiburg
Phone: +49 (0)761/203-67375
E-Mail: christian.boehler@imtek.de

Levin Sottru
Science Communicator
Cluster of Excellence BrainLinks–BrainTools
University of Freiburg
Phone: +49 (0)761/203-67721
E-Mail: sottru@blbt.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2016/pm.2016-02-19.22-en

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

Further reports about: IMTEK drugs molecular structure storage system synthetic synthetic material

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>