Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Apothecary Cabinet under the Skin


New method enables storage and controlled release of pharmaceutical substances in the body

Thanks to an invention by Freiburg scientists, it is now possible to dispense precise dosages of drugs locally in the body. A junior research group from the University of Freiburg’s Cluster of Excellence BrainLinks–BrainTools led by Dr. Maria Asplund and her doctoral candidate Christian Böhler has provided the foundations for a new molecular storage method that could find its way into clinical practice in the foreseeable future.

The storage layer (marked green) can be used to store drugs; the surface layer (marked blue) enables their release in controlled dosages.

Source: Christian Böhler/University of Freiburg

The microsystems engineers, electrical engineers, and materials scientists have succeeded in creating a compound of organic and inorganic materials that is particularly well suited for the compact storage of pharmacologically active substances. The study was conducted in cooperation with a team from the Laboratory for Nanotechnology under Prof. Dr. Margit Zacharias from the Department of Microsystems Engineering (IMTEK) of the University of Freiburg and was published in the journal Scientific Reports.

The starting point for producing the storage system was the conversion of a synthetic material from a liquid to a solid state. The researchers succeeded for the first time ever in using so-called atomic layer deposition for a process of this kind. This technique involves applying gases to a synthetic material. The gases penetrate into the molecular structure of the material and strengthen it from the inside.

The team used the polymer polyethylene glycol as the starting material. It reacts with zinc oxide in the deposition process to form an organic–inorganic hybrid compound whose molecular structure is suitable for storing drugs or other similar substances. An additional advantage of this material is the fact that it is water-soluble.

This makes it suitable for use as a drug carrier, since it is easy to release the substances stored in it again. For dispensing the doses precisely, for example for transport into the bloodstream, the polymer PEDOT is required. This is one of the main emphases of Asplund’s group: “Stated in simplified terms, the polymer works like a net with holes that open when a negative charge is applied and close when a positive charge is applied. This allows the molecules to be released in controlled dosages,” explains Böhler. It is enough to apply two thin films of the polymer to the surface of the hybrid material to ensure that the storage system is sufficiently stable and can precisely control the release of the stored substances.

The team from IMTEK developed a novel technology to improve the storage system: Similar systems produced previously were comparatively less compact, had a smaller storage volume, could not store molecules with different charges, and sometimes caused unintended chemical reactions. The researchers at IMTEK demonstrated in experiments with the substance fluorescein that the multilayered system exhibits ideal properties for dispensing precise doses of a broad spectrum of related molecules at a particular point over a particular period of time. In future experiments, the group aims to determine whether several different molecules can be stored at the same time or in neighboring chambers.

The technology would be particularly useful for so-called lab-on-a-chip methods, which involve the exchange and analysis of substances in a very small space. It could also be used in cancer treatment, for instance to release drugs directly onto a tumor from a reservoir under the skin. Researchers at IMTEK have already conducted tests on cell cultures indicating that the human body would be capable of accommodating an implant of this kind without complications.

Original publication:
C. Böhler, F. Güder, U. M. Kücükbayrak, M. Zacharias & M. Asplund (2016): A Simple Approach for Molecular Controlled Release based on Atomic Layer Deposition Hybridized Organic-Inorganic Layers, In: Scientific Reports 6, pp. 1–11.

Christian Böhler
BioEPIC Junior Research Group
Laboratory for Biomedical Microtechnology
Department of Microsystems Engineering – IMTEK
University of Freiburg
Phone: +49 (0)761/203-67375

Levin Sottru
Science Communicator
Cluster of Excellence BrainLinks–BrainTools
University of Freiburg
Phone: +49 (0)761/203-67721

Weitere Informationen:

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

Further reports about: IMTEK drugs molecular structure storage system synthetic synthetic material

More articles from Life Sciences:

nachricht Mitochondria control stem cell fate
27.10.2016 | Technische Universität München

nachricht How a fungus inhibits the immune system of plants
27.10.2016 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

The gene of autumn colours

27.10.2016 | Life Sciences

Polymer scaffolds build a better pill to swallow

27.10.2016 | Life Sciences

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>