Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aphids are sentinels of climate change

07.08.2008
Aphids are emerging as sentinels of climate change, researchers at BBSRC-supported Rothamsted Research have shown.

One of the UK's most damaging aphids - the peach-potato aphid (Myzus persicae) -has been found to be flying two weeks earlier for every 1°C rise in mean temperature for January and February combined. This year, the first aphid was caught on 25 April, which is almost four weeks ahead of the 42-year average.

This work is reported in BBSRC Business, the quarterly research highlights magazine of BBSRC (the Biotechnology and Biological Sciences Research Council).

Dr Richard Harrington of the Rothamsted Insect Survey said:
"One of the most noticeable consequences of climate change in the UK is the frequency of mild winters. As a direct result of this, aphids seeking new sources of food are appearing significantly earlier in the year and in significantly higher numbers. We have been studying the seasonal biology of aphids for a long time now and we know that populations can continue to grow over the winter and spring provided that conditions are warm enough. After a warm winter, there are much larger numbers flying and they are hence detected much earlier. This means that there are more aphids flying in spring and early summer, when crops are particularly vulnerable to damage."
... more about:
»Aphids »Climate »Rothamsted »sentinels

Scientists at Rothamsted Research have been monitoring the flying form of all aphid species for 42 years. They use a network of 16 suction traps (12 in England and 4 in Scotland), placed at various sites, to collect a representative sample of all flying insects. The long term data on aphids can be used to understand the wider implications of climate change, and also to prepare for the season ahead by determining the need for and timing of aphid control measures (based on preceding winter temperatures).

As well as being important indicators of a changing climate, aphids can cause devastating damage to crops. They extract large amounts of sap, weakening the plant, and also spread plant viruses. In addition, because the sap is very high in sugars the aphids excrete very sticky honeydew, which can encourage the growth of sooty moulds that build up and prevent sunlight from reaching the leaves, causing further weakening.

Professor Nigel Brown, Director of Science and Technology, BBSRC said:
"Environmental change is one of the big challenges facing the world today. These long-term data on the seasonal appearance of flying aphids not only show that there are already noticeable changes in the UK climate, but they also provide the knowledge which will help to mitigate the consequences."

| alfa
Further information:
http://www.bbsrc.ac.uk

Further reports about: Aphids Climate Rothamsted sentinels

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>