Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aphids as biosensors

15.03.2016

Do plants have some kind of nervous system? This is difficult to establish as there are no suitable measurement methods around. Plant researchers from Würzburg used aphids for this purpose – and discovered that plants respond differently to different kinds of damage.

When a plant is mechanically injured or exposed to cold, it will send electrical signals through its body. In both cases, the signals cover large distances of as much as ten centimetres and more. The signals travel from the areas that have been injured or exposed to cold to all other organs which then react accordingly, for example by synthesizing proteins that protect the plant against cold.


Electrical signals travel alongside the sieve tube elements of plants.

Picture: Rosalia Deeken / Sönke Scherzer /Christian Wiese


Aphids puncture the phloem vessels of plants. They can be used as biosensors for measuring electrical signals.

Picture: Jörg Fromm / Christian Wiese

An injury triggers totally different electrical signals than a cold shock. Biophysicist Professor Rainer Hedrich of the Julius-Maximilians-Universität Würzburg (JMU), Germany, and his team made this discovery using the model of thale cress (Arabidopsis thaliana).

A cut injury at a leaf triggers relatively slow electrical pulses over several minutes. Exposure to cold, in contrast, causes quicker pulses about 15 seconds long. "These differences indicate that the electrical signals each have a specific meaning," Hedrich further.

Electrical signals at the sieve tubes

Could this principle be similar to that of the human nervous system? Here, electrical signals travel alongside specialized cells, bridge synapses and ultimately trigger a response in the body. Plants, however, do not have a brain, nor nerve cells or synapses. According to Hedrich, there is hence no serious scientific evidence to attribute intelligence to plants and proclaim a "plant neurobiology".

Nevertheless, many researchers today are convinced that plants also use electrical signals to exchange information between the organs of their body. Hedrich's work on the Venus flytrap has even demonstrated that the carnivorous plant is capable of counting the electrical signals sent and make decisions based on this.

Such signals can be measured in the sieve tube elements which form a system of interconnected cells that pervades the entire plant like a vascular system and usually transports sugar and other substances.

Measuring signals difficult previously

Are the sieve tubes the "green power cable" or even some kind of "nervous system of the plant? This assessment is controversial – due to a methodical issue among others: So far, scientists have not had the proper tools to measure the transmission of electrical signals in plants over longer distances.

Rainer Hedrich, Vicenta Salvador-Recatalà and Ingo Dreyer have now developed an elegant solution to this problem which they publish in the science magazine “Trends in Plant Science”: The plant scientists used aphids as biosensors. They enhanced a method that has been known since 1964 which involves an electric circuit being generated between the aphid and the plant.

Aphids allowed to suck for the benefit of research

How that works? Aphids puncture the phloem vessels of plants and suck the sugary sap. If a fine wire is glued to their body and connected to an electrode sitting in the earth of a potted plant, an electric circuit is created between aphid and plant. It allows measuring how the electrical signals propagate in the sieve tubes.

This method will now be used to answer a number of questions. How and where are the signals created? What kind of information do they carry? Where are they registered and what reactions do they trigger? So there is still plenty of work for the Würzburg scientists to do – as well as for the plant lice that puncture and suck in the name of science.

“Electrical Wiring and Long-Distance Plant Communication”, Rainer Hedrich, Vicenta Salvador Recatalà, Ingo Dreyer, Trends in Plant Science, 12 February 2016, DOI: 10.1016/j.tplants.2016.01.016

Contact

Prof. Dr. Rainer Hedrich, Department of Botany I of the University of Würzburg, Phone: +49 931 31-86100, hedrich@botanik.uni-wuerzburg.de

Robert Emmerich | Julius-Maximilians-Universität Würzburg
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>