Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ants Protect Acacia Plants Against Pathogens

15.01.2014
Researchers discover an additional level of this insect-plant symbiosis.

The presence of ants greatly reduces bacterial abundance on surfaces of leaves and has a visibly positive effect on plant health. Study results indicate that symbiotic bacteria colonizing the ants inhibit pathogen growth on the leaves.


Leaves of Acacia hindsii plants colonized by mutualistic (left) or parasitic ants (right).

Marcia González-Teuber / Max Planck Institute for Chemical Ecology


Mutualistic Pseudomyrmex ferrugineus ants on an acacia plant.

Martin Heil / CINVESTAV, Irapuata, Mexico

The biological term “symbiosis” refers to what economists and politicians usually call a win-win situation: a relationship between two partners which is beneficial to both.

The mutualistic association between acacia plants and the ants that live on them is an excellent example: The plants provide food and accommodation in the form of food bodies and nectar as well as hollow thorns which can be used as nests.

The ants return this favor by protecting the plants against herbivores. Researchers at the Max Planck Institute for Chemical Ecology in Jena, Germany, have now found that ants also keep harmful leaf pathogens in check.

The presence of ants greatly reduces bacterial abundance on surfaces of leaves and has a visibly positive effect on plant health. Study results indicate that symbiotic bacteria colonizing the ants inhibit pathogen growth on the leaves. (New Phytologist, January 6, 2014, doi: 10.1111/nph.12664)

Myrmecophytes are plants which live in a symbiotic relationship with ants. The acacia species Acacia hindsii, which is native to tropical dry forests in Central America, is such a myrmecophyte. Its inhabitants are ants of the genus Pseudomyrmex. The ants depend completely on their host plants for nectar and the food bodies rich in proteins and lipids which they require. The acacia also provides shelter, the so-called domatia, in the hollows of its swollen thorns.

In return for room and board, mutualistic Pseudomyrmex ferrugineus ants become bodyguards, protecting their host against herbivores and competing plants. However, some ants also benefit from the plant’s services without giving anything in return, such as the parasitic ant species Pseudomyrmex gracilis.

Scientists at the Max Planck Institute for Chemical Ecology have now looked more deeply into the insect-plant interaction, asking whether the tiny bodyguards also provide protection against microbial pathogens. They compared the leaves of acacia plants which were inhabited by either mutualistic or parasitic ants to leaves from which ants had been removed. Intriguingly, the leaves of acacia colonized by parasitic ants showed more leaf damage from herbivores and microbial pathogens than did the leaves that had mutualistic ants. The presence of the right symbiotic partner seemed to have a positive effect on the plant’s health.

Analysis of the surfaces of the leaves revealed that the number of plant pathogens as well as of necrotic plant tissues increased considerably when mutualistic Pseudomyrmex ferrugineus ants were absent. These plants also showed strong immune responses in the form of an increased concentration of salicylic acid, a plant hormone which regulates defense against pathogens. Detailed analysis of the bacterial composition on the surfaces of the leaves suggested that the presence of mutualistic ants changed the bacterial populations and reduced harmful pathogens. Although far less pronounced, this effect could also be observed in parasitic ants.

How antimicrobial protection is transferred from ants to plant is still unclear. Chilean researcher Marcia González-Teuber, first author of the publication, suspected that microorganisms associated with the ants might play a role. Because acacia leaves are touched mainly by ants’ legs, she extracted the legs of mutualistic and parasitic ants and tested the effect of the extracts on the growth of bacterial pathogens in the lab. Plant pathogen Pseudomonas syringae was sensitive to the application of leg extracts of both ant species and its growth was inhibited. In the next step, the scientist isolated and identified bacteria from the legs of the ants. In lab tests, bacterial strains of the genera Bacillus, Lactococcus, Pantoea and Burkholderia effectively inhibited the growth of Pseudomonas bacteria isolated from infected acacia leaves. Interestingly, some of the bacterial genera associated with the ants are known to produce antibiotic substances.

The Jena researchers have thus added another level of interaction to the symbiosis between ants and their host plants. “Such mutualistic relationships are much more complex than previously thought. In the future, we will have to include bacteria and other microorganisms in our considerations,” says Wilhelm Boland, head of the Department of Bioorganic Chemistry at the Max Planck Institute. Studies on symbiotic relationships between ants and myrmecophytic plants should not overlook the role of bacterial partners that help the ants protect “their” plants. [AO]

Original Publication:
González-Teuber, M., Kaltenpoth, M., Boland, W. (2014). Mutualistic ants as an indirect defence against leaf pathogens. New Phytologist, DOI 10.1111/nph.12664

http://dx.doi.org/10.1111/nph.12664

Further Information:
Prof. Dr. Wilhelm Boland, Max Planck Institute for Chemical Ecology, E-Mail boland@ice.mpg.de, Tel.: +49 3641 57 1201
Contact and Picture Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-2110, overmeyer@ice.mpg.de

Download of high-resolution images via http://www.ice.mpg.de/ext/735.html

Angela Overmeyer | Max-Planck-Institut
Further information:
http://www.ice.mpg.de/ext/1057.html?&L=0

More articles from Life Sciences:

nachricht About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed
10.02.2016 | Universität Ulm

nachricht Chemical cages: New technique advances synthetic biology
10.02.2016 | Arizona State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

Im Focus: Superconductivity: footballs with no resistance

Indications of light-induced lossless electricity transmission in fullerenes contribute to the search for superconducting materials for practical applications.

Superconductors have long been confined to niche applications, due to the fact that the highest temperature at which even the best of these materials becomes...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

From intelligent knee braces to anti-theft backpacks

26.01.2016 | Event News

 
Latest News

About injured hearts that grow back - Heart regeneration mechanism in zebrafish revealed

10.02.2016 | Life Sciences

The most accurate optical single-ion clock worldwide

10.02.2016 | Earth Sciences

Absorbing acoustics with soundless spirals

10.02.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>