Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ants: Flexible in Tending the Brood

17.11.2009
Ants subjected to cool temperatures during their pupal stage differ in tending the brood when compared with fellow workers more generously provided with warmth.

This demonstrates: It is not only the genes, but also the conditions experienced during individual development that account for flexible behavior in an insect society.

Genes are not everything: Even simple parameters, such as temperature conditions, influence the behavior of social insects in the long term. This insight has been published in the journal Current Biology by a research group at the Biocenter of the University of Würzburg. The new findings are the result of experiments with the South American ant species Camponotus rufipes.

Ant brood develops best at 30 °C

The ant species Camponotus rufipes raises its offspring in above-ground nests in various brood chambers. The optimum temperature for the development of these animals is about 30 °C. Higher temperatures are detrimental and may even prove lethal to the brood.

In the nest, however, the temperatures fluctuate in daily and seasonal cycles. Therefore, these ants always carry their offspring to the brood chambers providing the best-suited temperature conditions.

Response threshold is not genetically determined

At which temperatures do the ants start to relocate the brood, i.e. what is their response threshold? "The response threshold is not genetically determined," says Würzburg zoologist Anja Weidenmüller. "Instead, it is clearly dependent on the temperature to which the animals were subjected during pupation."

The Würzburg zoologist raised two groups of ant pupae, of which one was kept at 22 °C and the other at 32 °C. All of the emerged ant workers then lived in artificial nests at 25 °C, where they performed brood care.

Four weeks after emergence of the adult ants, the researchers raised the temperature of a brood chamber. As a response to this manipulation, the group that had been kept cool during pupation started significantly earlier to take the offspring to safety. Furthermore, this group usually completed the evacuation of offspring from the endangered brood chamber more quickly, while the animals raised at 32 °C took more time for this task.

Ecological purpose of this behavior

A wide range of behavioral responses in ant workers is beneficial to the colony. This has been shown by several study groups in recent years. Individual differences between the ant workers are a basic requirement for the division of labor, which is one of the main factors responsible for the great ecological success of social insects.

But it is still largely unclear how the differences between ant workers are brought about. "So far, scientists have primarily presented genetic causes," says Anja Weidenmüller. For instance, the queen of a bee colony mates with up to 30 males. Furthermore, the genetic recombination rates of social insects in the production of egg and sperm cells are much higher than those of other insects. Both factors increase the genetic diversity and thus expand the range of behavioral responses in the colony.

"But now we have shown for the first time that the conditions experienced during the individual development of the ants can also modulate their behavior in the long term and we understand in which way this can be beneficial to the social organization of the colony."

Seasonal change provides a further reason for the fact that the response thresholds are influenced by developmental temperature conditions. In spring-time, the nests are often too cold. Therefore, it makes sense for ants that have emerged from such conditions to start transferring the brood to warmer places even at relatively low temperatures.

In contrast, the nest is subjected to high temperatures in summer. In this case, the response threshold of the ants is higher, because otherwise a disproportionate amount of time and energy would have to be invested in continual brood relocation.

Adult ants learn from experience

The Würzburg researchers conducted further experiments on ant workers kept at the same temperature during pupation. The adult ants of this group were subjected to a temperature increase in a brood chamber five times in a row. The result: With each experiment, the group grew more efficient in emptying the brood chamber.

"The individual ants became ever faster in evacuating the brood while the temperature at which they picked up the first pupa remained constant. So the response threshold did not change," explains Anja Weidenmüller. This means: "The ants do not grow more sensitive to higher temperatures, but they learn to react more adequately."

Flexible response to changing temperatures

Conclusion: Through these mechanisms, the ant colony is never in lack of workers best suited in their response to changing temperatures in each case. In comparison, a genetically determined fixed temperature response threshold would represent a less effective solution.

Journal publishes commentary on Würzburg study

The research result of the University of Würzburg attracts attention in the scientific community: The journal Current Biology acknowledges its importance by publishing a commentary on the study. The commentary was written by Benjamin P. Oldroyd of the University of Sydney.

"Preimaginal and Adult Experience Modulates the Thermal Response Behavior of Ants", Anja Weidenmüller, Christina Mayr, Christoph Johannes Kleineidam, Flavio Roces. Current Biology, 12. November 2009, doi:10.1016/j.cub.2009.08.059

Contact

Anja Weidenmüller, Zoology II (Behavioral Physiology and Sociobiology), Biocenter, University of Würzburg, phone ++49 931 31-89269, weidenmueller@biozentrum.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>