Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When ants attack: Researchers recreate chemicals that trigger aggression in Argentine ants

28.10.2009
Experiments led by researchers at the University of California, Berkeley, have demonstrated that normally friendly ants can turn against each other by exploiting the chemical cues they use to distinguish colony-mates from rivals.

The new study, to be published Wednesday, Oct. 28, in the open-access journal BMC Biology, sheds light on the factors influencing the social behavior of the Argentine ant, Linepithema humile, and provides hope for a new tactic in controlling the spread of this invasive species.

The research was conducted on the highly invasive Argentine ant, but the researchers note that the findings are likely relevant to other types of insects that rely upon chemical signals to identify each other.

"Almost all living organisms use chemical recognition cues to some degree, but it is particularly common among ants and other insects," said evolutionary biologist Neil Tsutsui, UC Berkeley associate professor of environmental science, policy and management and the study's principal investigator. "Surprisingly, it wasn't until this work that the specific chemicals used by Argentine ants to identify each other were isolated and tested."

Native to South America, the Argentine ant has taken hold in numerous countries worldwide, including Australia, Japan and the United States. In California, the ants are pervasive, pushing out native ant species and wreaking ecological havoc along the way. The Argentine ant has been blamed for exacerbating problems with some agricultural crops in the state, and for the decline of the coast horned lizard, which feeds exclusively upon the native ant species decimated by the invader.

In their native habitat, Argentine ants use their aggression to engage in inter-colony warfare with each other as they compete for resources, a behavioral trait that biologists credit for keeping the ants' numbers in check. Colonies tend to be small, typically measuring a few meters to a couple of hundred meters wide.

Biologists say that part of what makes the Argentine ants such successful invaders is that outside their home turf in South America, the fighting among them largely stops, allowing Argentine ant colonies from different regions to band together into a formidable group. Previous research conducted by Tsutsui and others provided evidence that the reason behind this relatively peaceful co-existence is the ants' genetic similarity, suggesting that they are part of the same, vast family. This lack of diversity falls in line with the theory that the invasive ants descended from a few individuals introduced to the new region.

"The striking thing about these Argentine ants in introduced ranges is that – with few exceptions – they are essentially functioning as a single, geographically huge supercolony," said Tsutsui. "If you take ants from San Diego and put them next to those from San Francisco, they'll act like they've known each other all their lives. They are part of a massive supercolony that extends hundreds of miles, nearly the entire length of California."

The UC Berkeley researchers worked with study co-authors Robert Sulc and Kenneth Shea from UC Irvine to narrow down and synthesize seven chemical molecules that trigger aggressive behavior among the Argentine ants. They also used two "control" chemicals not linked to fighting behavior. The "enemy" compounds were similar in that they were all long chains of hydrocarbons with one to three methyl groups attached.

Researchers then coated individual worker ants from the same colony with the purified substance. The researchers matched each of the chemically disguised ants with 10 untreated ants, one by one for five minutes each, in a petri dish.

"The 'enemy' chemicals generated significantly greater instances of flared mandibles, biting and other attacking behavior than did the control chemicals," said study co-lead author Ellen van Wilgenburg, a post-doctoral researcher in Tsutsui's lab at UC Berkeley. "We also saw higher levels of aggression when we increased the concentration of the chemicals and when we combined some of the chemicals together."

Despite this finding, Tsutsui cautions that significant barriers must be overcome before a pest-control substance based upon these chemicals is ready for the market. "We are still in the process of understanding how these chemicals control social behaviors in ants," he said. "These are custom chemicals that are very costly to synthesize at this stage. We are still a long way off from having large enough quantities to deploy in the field, or even knowing if these chemicals can control populations in the field."

The other co-lead author of the study is Miriam Brandt, a former post-doctoral researcher from Tsutsui's lab.

The U.S. Department of Agriculture, the California Structural Pest Control Board, the Defining Wisdom Program of the University of Chicago and the National Science Foundation helped support this research.

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>