Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

When ants attack: Researchers recreate chemicals that trigger aggression in Argentine ants

28.10.2009
Experiments led by researchers at the University of California, Berkeley, have demonstrated that normally friendly ants can turn against each other by exploiting the chemical cues they use to distinguish colony-mates from rivals.

The new study, to be published Wednesday, Oct. 28, in the open-access journal BMC Biology, sheds light on the factors influencing the social behavior of the Argentine ant, Linepithema humile, and provides hope for a new tactic in controlling the spread of this invasive species.

The research was conducted on the highly invasive Argentine ant, but the researchers note that the findings are likely relevant to other types of insects that rely upon chemical signals to identify each other.

"Almost all living organisms use chemical recognition cues to some degree, but it is particularly common among ants and other insects," said evolutionary biologist Neil Tsutsui, UC Berkeley associate professor of environmental science, policy and management and the study's principal investigator. "Surprisingly, it wasn't until this work that the specific chemicals used by Argentine ants to identify each other were isolated and tested."

Native to South America, the Argentine ant has taken hold in numerous countries worldwide, including Australia, Japan and the United States. In California, the ants are pervasive, pushing out native ant species and wreaking ecological havoc along the way. The Argentine ant has been blamed for exacerbating problems with some agricultural crops in the state, and for the decline of the coast horned lizard, which feeds exclusively upon the native ant species decimated by the invader.

In their native habitat, Argentine ants use their aggression to engage in inter-colony warfare with each other as they compete for resources, a behavioral trait that biologists credit for keeping the ants' numbers in check. Colonies tend to be small, typically measuring a few meters to a couple of hundred meters wide.

Biologists say that part of what makes the Argentine ants such successful invaders is that outside their home turf in South America, the fighting among them largely stops, allowing Argentine ant colonies from different regions to band together into a formidable group. Previous research conducted by Tsutsui and others provided evidence that the reason behind this relatively peaceful co-existence is the ants' genetic similarity, suggesting that they are part of the same, vast family. This lack of diversity falls in line with the theory that the invasive ants descended from a few individuals introduced to the new region.

"The striking thing about these Argentine ants in introduced ranges is that – with few exceptions – they are essentially functioning as a single, geographically huge supercolony," said Tsutsui. "If you take ants from San Diego and put them next to those from San Francisco, they'll act like they've known each other all their lives. They are part of a massive supercolony that extends hundreds of miles, nearly the entire length of California."

The UC Berkeley researchers worked with study co-authors Robert Sulc and Kenneth Shea from UC Irvine to narrow down and synthesize seven chemical molecules that trigger aggressive behavior among the Argentine ants. They also used two "control" chemicals not linked to fighting behavior. The "enemy" compounds were similar in that they were all long chains of hydrocarbons with one to three methyl groups attached.

Researchers then coated individual worker ants from the same colony with the purified substance. The researchers matched each of the chemically disguised ants with 10 untreated ants, one by one for five minutes each, in a petri dish.

"The 'enemy' chemicals generated significantly greater instances of flared mandibles, biting and other attacking behavior than did the control chemicals," said study co-lead author Ellen van Wilgenburg, a post-doctoral researcher in Tsutsui's lab at UC Berkeley. "We also saw higher levels of aggression when we increased the concentration of the chemicals and when we combined some of the chemicals together."

Despite this finding, Tsutsui cautions that significant barriers must be overcome before a pest-control substance based upon these chemicals is ready for the market. "We are still in the process of understanding how these chemicals control social behaviors in ants," he said. "These are custom chemicals that are very costly to synthesize at this stage. We are still a long way off from having large enough quantities to deploy in the field, or even knowing if these chemicals can control populations in the field."

The other co-lead author of the study is Miriam Brandt, a former post-doctoral researcher from Tsutsui's lab.

The U.S. Department of Agriculture, the California Structural Pest Control Board, the Defining Wisdom Program of the University of Chicago and the National Science Foundation helped support this research.

Sarah Yang | EurekAlert!
Further information:
http://www.berkeley.edu

More articles from Life Sciences:

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Scientists reach back in time to discover some of the most power-packed galaxies

28.02.2017 | Physics and Astronomy

Nano 'sandwich' offers unique properties

28.02.2017 | Materials Sciences

Light beam replaces blood test during heart surgery

28.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>