Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ants' behavior leads to research method for optimizing product development time, costs

30.01.2013
Ants’ behavior leads to Wayne State University researcher’s method for optimizing product development time, costs
Trying to find just the right balance of time spent in meetings and time performing tasks is a tough problem for managers, but a Wayne State University researcher believes the behavior of ants may provide a useful lesson on how to do it.

Using computer simulations derived from the characteristics of ants seeking food, Kai Yang, Ph.D., professor of industrial and systems engineering in the College of Engineering, has developed a mathematical model-based methodology to estimate the optimal amount of time spent to develop a product, as well as the cost, in overlapped product development. It is the latest in a series of projects he has worked on for Siemens North America.

“Non-discrete Ant Colony Optimisation (NdACO) to Optimise the Development Cycle Time and Cost in Overlapped Product Development,” published recently in the International Journal of Production Research, utilizes the concept of concurrent engineering (CE), a systematic approach to product development based on parallel execution of tasks. The approach integrates several functions to reduce the development time and cost of a product while maintaining its quality. Co-authors include Satish Tyagi, Wayne State research assistant, and Anoop Verma, Ph.D., of the University of Iowa.

In CE, cross-functional teams communicate through several meetings, some before the beginning of project, categorized as precommunication, and some during execution of the project, called communication policy.

Because significant cost is incurred through those meetings, Yang said, it is necessary to investigate the cost-time trade-offs involved in the concurrent product development process to enhance work performance. Otherwise, applying the process can result in a larger number of iterations, or rework, adding to both time and cost.

“Currently, there is a lack of communication flow within organizations due to their large size, time differences, etc.,” Yang said. “Therefore, the amount of precommunication and communication policy and the extent of overlapping stages should be meticulously determined to achieve the desired goals.”

As product development moves forward, lack of communication from upstream decision-makers to downstream workers can leave the latter to operate without the latest available information to complete their task efficiently, he said.

Researchers studying ants’ food-foraging behavior have noticed that changes in the pheromone trails left behind by the insects communicate the best ways for those that come after them to proceed. That led to the development of ant colony optimization (ACO) models, which Yang and his team are using.

Researchers believe their simulation model could reduce product definition time by as much as 50 percent, and lead to best practices that improve critical thinking and remove communication barriers. Such practices can be applied to large-sector manufacturing, health care and service companies, Yang said.

Wayne State University is one of the nation’s pre-eminent public research universities in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world.

Julie O'Connor | EurekAlert!
Further information:
http://www.research.wayne.edu
http://www.wayne.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>