Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ants' behavior leads to research method for optimizing product development time, costs

30.01.2013
Ants’ behavior leads to Wayne State University researcher’s method for optimizing product development time, costs
Trying to find just the right balance of time spent in meetings and time performing tasks is a tough problem for managers, but a Wayne State University researcher believes the behavior of ants may provide a useful lesson on how to do it.

Using computer simulations derived from the characteristics of ants seeking food, Kai Yang, Ph.D., professor of industrial and systems engineering in the College of Engineering, has developed a mathematical model-based methodology to estimate the optimal amount of time spent to develop a product, as well as the cost, in overlapped product development. It is the latest in a series of projects he has worked on for Siemens North America.

“Non-discrete Ant Colony Optimisation (NdACO) to Optimise the Development Cycle Time and Cost in Overlapped Product Development,” published recently in the International Journal of Production Research, utilizes the concept of concurrent engineering (CE), a systematic approach to product development based on parallel execution of tasks. The approach integrates several functions to reduce the development time and cost of a product while maintaining its quality. Co-authors include Satish Tyagi, Wayne State research assistant, and Anoop Verma, Ph.D., of the University of Iowa.

In CE, cross-functional teams communicate through several meetings, some before the beginning of project, categorized as precommunication, and some during execution of the project, called communication policy.

Because significant cost is incurred through those meetings, Yang said, it is necessary to investigate the cost-time trade-offs involved in the concurrent product development process to enhance work performance. Otherwise, applying the process can result in a larger number of iterations, or rework, adding to both time and cost.

“Currently, there is a lack of communication flow within organizations due to their large size, time differences, etc.,” Yang said. “Therefore, the amount of precommunication and communication policy and the extent of overlapping stages should be meticulously determined to achieve the desired goals.”

As product development moves forward, lack of communication from upstream decision-makers to downstream workers can leave the latter to operate without the latest available information to complete their task efficiently, he said.

Researchers studying ants’ food-foraging behavior have noticed that changes in the pheromone trails left behind by the insects communicate the best ways for those that come after them to proceed. That led to the development of ant colony optimization (ACO) models, which Yang and his team are using.

Researchers believe their simulation model could reduce product definition time by as much as 50 percent, and lead to best practices that improve critical thinking and remove communication barriers. Such practices can be applied to large-sector manufacturing, health care and service companies, Yang said.

Wayne State University is one of the nation’s pre-eminent public research universities in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world.

Julie O'Connor | EurekAlert!
Further information:
http://www.research.wayne.edu
http://www.wayne.edu

More articles from Life Sciences:

nachricht Gene switch may repair DNA and prevent cancer
12.02.2016 | Institute for Integrated Cell-Material Sciences at Kyoto University

nachricht New method opens crystal clear views of biomolecules
11.02.2016 | Deutsches Elektronen-Synchrotron DESY

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Production of an AIDS vaccine in algae

Today, plants and microorganisms are heavily used for the production of medicinal products. The production of biopharmaceuticals in plants, also referred to as “Molecular Pharming”, represents a continuously growing field of plant biotechnology. Preferred host organisms include yeast and crop plants, such as maize and potato – plants with high demands. With the help of a special algal strain, the research team of Prof. Ralph Bock at the Max Planck Institute of Molecular Plant Physiology in Potsdam strives to develop a more efficient and resource-saving system for the production of medicines and vaccines. They tested its practicality by synthesizing a component of a potential AIDS vaccine.

The use of plants and microorganisms to produce pharmaceuticals is nothing new. In 1982, bacteria were genetically modified to produce human insulin, a drug...

Im Focus: The most accurate optical single-ion clock worldwide

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock which attains an accuracy which had only been predicted theoretically so far. Their optical ytterbium clock achieved a relative systematic measurement uncertainty of 3 E-18. The results have been published in the current issue of the scientific journal "Physical Review Letters".

Atomic clock experts from the Physikalisch-Technische Bundesanstalt (PTB) are the first research group in the world to have built an optical single-ion clock...

Im Focus: Goodbye ground control: autonomous nanosatellites

The University of Würzburg has two new space projects in the pipeline which are concerned with the observation of planets and autonomous fault correction aboard satellites. The German Federal Ministry of Economic Affairs and Energy funds the projects with around 1.6 million euros.

Detecting tornadoes that sweep across Mars. Discovering meteors that fall to Earth. Investigating strange lightning that flashes from Earth's atmosphere into...

Im Focus: Flow phenomena on solid surfaces: Physicists highlight key role played by boundary layer velocity

Physicists from Saarland University and the ESPCI in Paris have shown how liquids on solid surfaces can be made to slide over the surface a bit like a bobsleigh on ice. The key is to apply a coating at the boundary between the liquid and the surface that induces the liquid to slip. This results in an increase in the average flow velocity of the liquid and its throughput. This was demonstrated by studying the behaviour of droplets on surfaces with different coatings as they evolved into the equilibrium state. The results could prove useful in optimizing industrial processes, such as the extrusion of plastics.

The study has been published in the respected academic journal PNAS (Proceedings of the National Academy of Sciences of the United States of America).

Im Focus: New study: How stable is the West Antarctic Ice Sheet?

Exceeding critical temperature limits in the Southern Ocean may cause the collapse of ice sheets and a sharp rise in sea levels

A future warming of the Southern Ocean caused by rising greenhouse gas concentrations in the atmosphere may severely disrupt the stability of the West...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Symposium on Climate Change Adaptation in Africa 2016

12.02.2016 | Event News

Travel grants available: Meet the world’s most proficient mathematicians and computer scientists

09.02.2016 | Event News

AKL’16: Experience Laser Technology Live in Europe´s Largest Laser Application Center!

02.02.2016 | Event News

 
Latest News

LIGO confirms RIT's breakthrough prediction of gravitational waves

12.02.2016 | Physics and Astronomy

Gene switch may repair DNA and prevent cancer

12.02.2016 | Life Sciences

Using 'Pacemakers' in spinal cord injuries

12.02.2016 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>