Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antioxidants Cause Fertility Problems in Females

18.01.2011
Antioxidants are sold over the counter everywhere. They’re added to food, drink and face cream. But new research by Prof. Nava Dekel and her team of the Weizmann Institute of Science has revealed a possible unexpected side effect of antioxidants: They might cause fertility problems in females. Their results were recently published in the Proceedings of the National Academy of Sciences USA (PNAS).

Antioxidants are sold over the counter everywhere. They’re added to food, drink and face cream. But according to Prof. Nava Dekel of the Biological Regulation Department, we still don’t have a complete understanding of how they act in our bodies. New research by Dekel and her team, recently published in the Proceedings of the National Academy of Sciences USA (PNAS), has revealed a possible unexpected side effect of antioxidants: They might cause fertility problems in females.

Common antioxidants include vitamins C and E. These work by eliminating molecules called reactive oxygen species that are produced naturally in the body. Stress can cause these chemically active molecules to be overproduced; in large amounts they damage cells indiscriminately. By neutralizing these potentially harmful substances, antioxidants may, theoretically, improve health and slow down the aging process.

But when Dekel and her research team including her former and present Ph.D. students Dr. Ketty Shkolnik and Ari Tadmor applied antioxidants to the ovaries of female mice, the results were surprising: ovulation levels dropped precipitously. That is, very few eggs were released from the ovarian follicles to reach the site of fertilization, compared to those in untreated ovaries.

To understand what lies behind these initial findings, the team asked whether it is possible that the process of ovulation might rely on the very ‘harmful’ substances destroyed by antioxidants – reactive oxygen species.

Further testing in mice showed that this is, indeed, the case. In one experiment, for instance, Dekel and her team treated some ovarian follicles with luteinizing hormone, the physiological trigger for ovulation, and others with hydrogen peroxide, a reactive oxygen species. The results showed hydrogen peroxide fully mimicked the effect of the ovulation-inducing hormone. This implies that reactive oxygen species that are produced in response to luteinizing hormone serve, in turn, as mediators for this physiological stimulus leading to ovulation.

Among other things, these results help fill in a picture that has begun to emerge in recent years of fertility and conception, in which it appears that these processes share a number of common mechanisms with inflammation. It makes sense, says Dekel, that substances which prevent inflammation in other parts of the body might also get in the way of normal ovulation, and so more caution should be taken when administering such substances.

Much of Dekel’s research has focused on fertility -- her previous results are already helping some women become pregnant. Ironically, the new study has implications for those seeking the opposite effect. Dekel: ‘On the one hand, these findings could prove useful to women who are having trouble getting pregnant. On the other, further studies might show that certain antioxidants might be effective means of birth control that could be safer than today’s hormone-based prevention.’

Dekel and her team are now planning further studies to investigate the exact mechanics of this step in ovulation and to examine its effect on mice when administered in either food or drink. In addition, they plan to collect data on the possible link between females being administered antioxidant supplements and the difficulty to conceive.

Prof. Nava Dekel’s research is supported by the M.D. Moross Institute for Cancer Research; the Jeanne and Joseph Nissim Foundation for Life Sciences Research; the Yeda-Sela Center for Basic Research; the Willner Family Center for Vascular Biology – Head; the Dwek Family Biomedical Research Fund; the Phyllis and Joseph Gurwin Fund for Scientific Advancement; and the J & R Foundation.

Prof. Dekel is the incumbent of the Philip M. Klutznick Professorial Chair of Developmental Biology

The Weizmann Institute of Science in Rehovot, Israel, is one of the world's top-ranking multidisciplinary research institutions. Noted for its wide-ranging exploration of the natural and exact sciences, the Institute is home to 2,700 scientists, students, technicians and supporting staff. Institute research efforts include the search for new ways of fighting disease and hunger, examining leading questions in mathematics and computer science, probing the physics of matter and the universe, creating novel materials and developing new strategies for protecting the environment.

Weizmann Institute news releases are posted on the World Wide Web at http://wis-wander.weizmann.ac.il, and are also available at http://www.eurekalert.org.

Yivsam Azgad | idw
Further information:
http://wis-wander.weizmann.ac.il
http://www.pnas.org/content/early/2011/01/05/1017213108.full.pdf+html

Further reports about: Academy PNAS Proceeding antioxidants females fertility hydrogen peroxide oxygen species

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>