Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antimicrobial from soaps promotes bacteria buildup in human noses

08.04.2014

An antimicrobial agent found in common household soaps, shampoos and toothpastes may be finding its way inside human noses where it promotes the colonization of Staphylococcus aureus bacteria and could predispose some people to infection.

Researchers at the University of Michigan report their findings this week in a study published in mBio®, the online open-access journal of the American Society for Microbiology.

Triclosan, a man-made compound used in a range of antibacterial personal care products such as soaps, toothpastes, kitchen surfaces, clothes and medical equipment, was found in nasal passages of 41% of adults sampled. A higher proportion of subjects with triclosan also had S. aureus colonization. S. aureus could promote infection in some populations such as people undergoing surgery.

Triclosan has been around for the past 40 years, says senior study author Blaise Boles, PhD, an assistant professor of molecular, cellular and developmental biology at the university, and has been incorporated into many antibacterial household products within the past decade. Other studies have found traces of triclosan in human fluids including serum, urine and milk, and studies in mammals have found that high concentrations of triclosan can disrupt the endocrine system and decrease heart and skeletal muscle function.

"It's really common in hand soaps, toothpastes and mouthwashes but there's no evidence it does a better job than regular soap," Boles says. "This agent may have unintended consequences in our bodies. It could promote S. aureus nasal colonization, putting some people at increased risk for infection."

Additional experiments found that S. aureus grown in the presence of triclosan was better able to attach to human proteins, and that rats exposed to triclosan were more susceptible to S. aureus nasal colonization.

"In light of the significant use of triclosan in consumer products and its widespread environmental contamination, our data combined with previous studies showing impacts of triclosan on the endocrine system and muscle function suggest that a reevaluation of triclosan in consumer products is urgently needed," the authors wrote.

Boles says he would like to conduct a more broad survey to determine if triclosan is influencing microbial colonization at additional human body sites.

###

The study was funded by the National Institute of Allergy and Infectious Diseases.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!

Further reports about: Triclosan antibacterial bacteria colonization microbiology skeletal toothpastes

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>