Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antidote can deactivate new form of heparin

27.02.2014

Low-molecular-weight heparin is commonly used in surgeries to prevent dangerous blood clots. But when patients experience the other extreme – uncontrolled bleeding – in response to low-molecular-weight heparin, there is no antidote.

Now researchers at the University of North Carolina at Chapel Hill and Rensselaer Polytechnic Institute have created a synthetic form of low-molecular-weight heparin that can be reversed if things go wrong and would be safer for patients with poor kidney function. 

“When doctors talk to me about the kind of heparin they want to use during and after surgery, they want it reversible, and they want it to not go through the kidneys,” said Jian Liu, the John A. and Deborah S. McNeill Jr. Distinguished Professor in the UNC Eshelman School of Pharmacy, and one of the inventors of the new drug. 

While unfractionated heparin is the type commonly used in procedures such as dialysis, the more-refined low-molecular-weight heparins are the drugs of choice for preventing dangerous blood clots in hospitalized patients. However, low-molecular-weight heparin doesn’t have an antidote and it is also cleared from the body by the kidneys, which can make it unsuitable for patients with a weakened kidney function, a relatively common condition among hospitalized patients. 

... more about:
»UNC »bleeding »blood »clots »function »kidneys »synthetic

Liu and RPI’s Robert Lindhardt and their teams created a synthetic version of low-molecular-weight heparin that can be counteracted by an existing drug and can be cleared by the liver, not the kidneys. Their creation is described in Nature Chemical Biology this week. 

Up to 5 percent of patients receiving heparin experience some form of uncontrolled bleeding, explained Liu. Patients receiving unfractionated heparin are in less danger because there is an existing FDA-approved antidote available. The antidote, called protamine, is not as effective in reversing low-molecular-weight heparin so Liu and Lindhardt tweaked the drug’s molecular structure so that protamine is able to deactivate it. 

“If a person’s kidneys aren’t effectively clearing heparin from the blood, the drug stays active in the body for longer than expected,” said Nigel Key, a hematologist with UNC Health Care and the UNC School of Medicine and one of the paper’s coauthors. “That can represent a potentially dangerous situation for the physician, pharmacist and patient.” 

Heparin prevents blood clots from forming and is most often used during and after such procedures as kidney dialysis, heart bypass surgery, stent implantation, indwelling catheters and knee and hip replacement. Its side effects can include uncontrolled bleeding and thrombocytopenia (too few platelets in the blood). The worldwide sales of heparin are estimated at $4 billion annually. 

The natural form of the drug was in the spotlight in spring 2008 when more than eighty people died and hundreds of others suffered adverse reactions to it, leading to recalls of heparin in countries around the world. Authorities linked the problems to a contaminant in raw natural heparin from China. Natural heparin is most commonly extracted from the linings of pig intestines. 

“The pig stuff has served us well for fifty years and is very inexpensive, but if we cannot control the supply chain, we cannot ensure the safety of the drug,” Liu said. “I am working for the day when synthetic heparin can be brewed in large laboratories at a low cost.” 

School of Pharmacy contact: David Etchison, (919) 966-7744, david_etchison@unc.edu
News Services contact: Thania Benios, (919) 962-8596, thania_benios@unc.edu

Thania Benios | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: UNC bleeding blood clots function kidneys synthetic

More articles from Life Sciences:

nachricht More than just a mechanical barrier – epithelial cells actively combat the flu virus
04.05.2016 | Helmholtz-Zentrum für Infektionsforschung

nachricht Discovery of a fundamental limit to the evolution of the genetic code
03.05.2016 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

New fabrication and thermo-optical tuning of whispering gallery microlasers

04.05.2016 | Physics and Astronomy

Introducing the disposable laser

04.05.2016 | Physics and Astronomy

A new vortex identification method for 3-D complex flow

04.05.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>