Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antidote can deactivate new form of heparin

27.02.2014

Low-molecular-weight heparin is commonly used in surgeries to prevent dangerous blood clots. But when patients experience the other extreme – uncontrolled bleeding – in response to low-molecular-weight heparin, there is no antidote.

Now researchers at the University of North Carolina at Chapel Hill and Rensselaer Polytechnic Institute have created a synthetic form of low-molecular-weight heparin that can be reversed if things go wrong and would be safer for patients with poor kidney function. 

“When doctors talk to me about the kind of heparin they want to use during and after surgery, they want it reversible, and they want it to not go through the kidneys,” said Jian Liu, the John A. and Deborah S. McNeill Jr. Distinguished Professor in the UNC Eshelman School of Pharmacy, and one of the inventors of the new drug. 

While unfractionated heparin is the type commonly used in procedures such as dialysis, the more-refined low-molecular-weight heparins are the drugs of choice for preventing dangerous blood clots in hospitalized patients. However, low-molecular-weight heparin doesn’t have an antidote and it is also cleared from the body by the kidneys, which can make it unsuitable for patients with a weakened kidney function, a relatively common condition among hospitalized patients. 

... more about:
»UNC »bleeding »blood »clots »function »kidneys »synthetic

Liu and RPI’s Robert Lindhardt and their teams created a synthetic version of low-molecular-weight heparin that can be counteracted by an existing drug and can be cleared by the liver, not the kidneys. Their creation is described in Nature Chemical Biology this week. 

Up to 5 percent of patients receiving heparin experience some form of uncontrolled bleeding, explained Liu. Patients receiving unfractionated heparin are in less danger because there is an existing FDA-approved antidote available. The antidote, called protamine, is not as effective in reversing low-molecular-weight heparin so Liu and Lindhardt tweaked the drug’s molecular structure so that protamine is able to deactivate it. 

“If a person’s kidneys aren’t effectively clearing heparin from the blood, the drug stays active in the body for longer than expected,” said Nigel Key, a hematologist with UNC Health Care and the UNC School of Medicine and one of the paper’s coauthors. “That can represent a potentially dangerous situation for the physician, pharmacist and patient.” 

Heparin prevents blood clots from forming and is most often used during and after such procedures as kidney dialysis, heart bypass surgery, stent implantation, indwelling catheters and knee and hip replacement. Its side effects can include uncontrolled bleeding and thrombocytopenia (too few platelets in the blood). The worldwide sales of heparin are estimated at $4 billion annually. 

The natural form of the drug was in the spotlight in spring 2008 when more than eighty people died and hundreds of others suffered adverse reactions to it, leading to recalls of heparin in countries around the world. Authorities linked the problems to a contaminant in raw natural heparin from China. Natural heparin is most commonly extracted from the linings of pig intestines. 

“The pig stuff has served us well for fifty years and is very inexpensive, but if we cannot control the supply chain, we cannot ensure the safety of the drug,” Liu said. “I am working for the day when synthetic heparin can be brewed in large laboratories at a low cost.” 

School of Pharmacy contact: David Etchison, (919) 966-7744, david_etchison@unc.edu
News Services contact: Thania Benios, (919) 962-8596, thania_benios@unc.edu

Thania Benios | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: UNC bleeding blood clots function kidneys synthetic

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>