Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antidote can deactivate new form of heparin

27.02.2014

Low-molecular-weight heparin is commonly used in surgeries to prevent dangerous blood clots. But when patients experience the other extreme – uncontrolled bleeding – in response to low-molecular-weight heparin, there is no antidote.

Now researchers at the University of North Carolina at Chapel Hill and Rensselaer Polytechnic Institute have created a synthetic form of low-molecular-weight heparin that can be reversed if things go wrong and would be safer for patients with poor kidney function. 

“When doctors talk to me about the kind of heparin they want to use during and after surgery, they want it reversible, and they want it to not go through the kidneys,” said Jian Liu, the John A. and Deborah S. McNeill Jr. Distinguished Professor in the UNC Eshelman School of Pharmacy, and one of the inventors of the new drug. 

While unfractionated heparin is the type commonly used in procedures such as dialysis, the more-refined low-molecular-weight heparins are the drugs of choice for preventing dangerous blood clots in hospitalized patients. However, low-molecular-weight heparin doesn’t have an antidote and it is also cleared from the body by the kidneys, which can make it unsuitable for patients with a weakened kidney function, a relatively common condition among hospitalized patients. 

... more about:
»UNC »bleeding »blood »clots »function »kidneys »synthetic

Liu and RPI’s Robert Lindhardt and their teams created a synthetic version of low-molecular-weight heparin that can be counteracted by an existing drug and can be cleared by the liver, not the kidneys. Their creation is described in Nature Chemical Biology this week. 

Up to 5 percent of patients receiving heparin experience some form of uncontrolled bleeding, explained Liu. Patients receiving unfractionated heparin are in less danger because there is an existing FDA-approved antidote available. The antidote, called protamine, is not as effective in reversing low-molecular-weight heparin so Liu and Lindhardt tweaked the drug’s molecular structure so that protamine is able to deactivate it. 

“If a person’s kidneys aren’t effectively clearing heparin from the blood, the drug stays active in the body for longer than expected,” said Nigel Key, a hematologist with UNC Health Care and the UNC School of Medicine and one of the paper’s coauthors. “That can represent a potentially dangerous situation for the physician, pharmacist and patient.” 

Heparin prevents blood clots from forming and is most often used during and after such procedures as kidney dialysis, heart bypass surgery, stent implantation, indwelling catheters and knee and hip replacement. Its side effects can include uncontrolled bleeding and thrombocytopenia (too few platelets in the blood). The worldwide sales of heparin are estimated at $4 billion annually. 

The natural form of the drug was in the spotlight in spring 2008 when more than eighty people died and hundreds of others suffered adverse reactions to it, leading to recalls of heparin in countries around the world. Authorities linked the problems to a contaminant in raw natural heparin from China. Natural heparin is most commonly extracted from the linings of pig intestines. 

“The pig stuff has served us well for fifty years and is very inexpensive, but if we cannot control the supply chain, we cannot ensure the safety of the drug,” Liu said. “I am working for the day when synthetic heparin can be brewed in large laboratories at a low cost.” 

School of Pharmacy contact: David Etchison, (919) 966-7744, david_etchison@unc.edu
News Services contact: Thania Benios, (919) 962-8596, thania_benios@unc.edu

Thania Benios | EurekAlert!
Further information:
http://www.unc.edu

Further reports about: UNC bleeding blood clots function kidneys synthetic

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

Large-scale battery storage system in field trial

11.12.2017 | Power and Electrical Engineering

See, understand and experience the work of the future

11.12.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>