Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibody against carcinogenic substance deciphered

13.07.2017

Summertime is barbecue time. However, when fat reacts with glowing coal, a substance chemists call benzopyrene is created. It is a widespread environmental toxin that can cause cancer in humans. Since buildings were heated with coal and wood for decades, dispersed by chimney smoke, it is now also found in soil and groundwater. A team led by Prof. Arne Skerra from the Technical University of Munich (TUM) has deciphered the binding mechanism of an antibody to benzopyrene — a discovery that could pave the way for an easier method to identify and, hence, remove the toxin.

During the incomplete combustion of organic substances polycyclic aromatic hydrocarbons (PAHs) are created. The most well-known of these substances is benzo[a]pyrene (BaP) due to its high toxicity and its facile identification. Hence, it is generally used as a marker for the prevalence of PAHs. In the human body, PAHs substances are converted into molecules that may cause genetic variations (mutations), which in the worst case results in tumors. Hence, PAHs are seen as hazardous substances or environmental toxins.


When fat reacts with glowing coal at a barbecue, a substance chemists call benzopyrene is created. It is a widespread environmental toxin that can cause cancer in humans.

Photo: Fotolia/Dederer

Source: TUM

PAHs are released during the incomplete combustion of fossil fuels

Apart from the barbecuing of sausages, steaks or vegetables, significant amounts of PAHs are also created when smoking tobacco, which is why even passive smoking is now considered as being carcinogenic. Similarly, open fireplaces in apartments and vehicle exhausts are also seen as sources of PAHs. PAHs emitted into the air by the burning of fossil fuels remain there or bind to soot particles. By way of precipitation, they can then accumulate in the soil, on playgrounds, and in groundwater, ultimately also ending up in drinking water.

Because benzo[a]pyrene is highly carcinogenic, European directives specify a limit for the maximum amount of this substance in drinking water (10 ng/L for BaP). However, in order to measure such minute values, highly sensitive methods are needed. The team led by Prof. Arne Skerra from the Chair of Biological Chemistry in Weihenstephan and Prof. Dietmar Knopp from the Chair of Analytical Chemistry in Grosshadern have succeeded in identifying an antibody that tightly binds benzo[a]pyrene. They describe the complicated binding mechanism in the current issue of the specialist journal "Angewandte Chemie International Edition" (lit. "Applied Chemistry").

"We now know how the binding of the antibody to benzo[a]pyrene, a peculiar organic compound, takes place", says Prof. Skerra, "allowing us to possibly develop antibodies against other PAHs as well. Hence, in the next step, it is conceivable that such antibodies may be used to separate aromatic hydrocarbons from contaminated drinking water, for example."

However, whether the scientists' discovery can eliminate the hazards of eating barbecue sausages is a different matter. Until then, barbecue fans should not grill their meat too long nor at a too high temperature, and also prevent meat juice and fat from dripping into the hot coal if possible.

Publikation:
Andreas Eichinger, Irmgard Neumaier, Michael Pschenitza, Reinhard Niessner, Dietmar Knopp und Arne Skerra: Tight molecular recognition of benzo[a]pyrene by a high affinity antibody, Angewandte Chemie International Edition 6/2017. DOI: 10.1002/anie.201703893

Contact:
Prof. Dr. Arne Skerra
Chair of Biological Chemistry
Technical University of Munich
Phone: +49/8161/71-4351
Mail: skerra@tum.de
http://www.wzw.tum.de/bc

Prof. Dr. Dietmar Knopp
Technical University of Munich
Chair of Analytical Chemistry
Phone: +49/89/2180-78241
Mail: dietmar.knopp@ch.tum.de

Weitere Informationen:

https://www.tum.de/en/about-tum/news/press-releases/detail/article/34067/

Dr. Ulrich Marsch | Technische Universität München

More articles from Life Sciences:

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>