Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibodies Help Protect Monkeys from HIV-Like Virus

06.05.2011
Finding Could Aid Development of HIV Vaccine for Humans
WHAT:
Using a monkey model of AIDS, scientists have identified a vaccine-generated immune-system response that correlates with protection against infection by the monkey version of HIV, called simian immunodeficiency virus (SIV). The researchers found that neutralizing antibodies generated by immunization were associated with protection against SIV infection. This finding marks an important step toward understanding how an effective HIV vaccine could work, according to scientists who led the study at the National Institute of Allergy and Infectious Diseases (NIAID), part of the National Institutes of Health.

Scientists administered the SIV vaccine to half of the 129 monkeys in this study and a placebo vaccine to the other half. The scientists then gave each monkey up to 12 doses of one of two forms of SIV through rectal injection to simulate sexual exposure to the virus. The vaccine regimen did not protect the monkeys that received one form of SIV, but it reduced the rate of infection by 50 percent in the monkeys that received the other form of the virus.

To learn how the vaccine worked, the study team examined a variety of immune responses and certain genetic factors in the monkeys that the vaccine protected. The scientists found that SIV neutralizing antibodies and the activation of white blood cells known as helper CD4+ T cells correlated with the protective effect. Also, monkeys that expressed two copies of a gene known to help limit SIV replication were better protected by the vaccine than monkeys that did not, demonstrating that genetic factors can contribute to protection.

This study provides evidence that neutralizing antibodies are an important part of the immune response needed to prevent HIV infection. The ability of the vaccine regimen to protect monkeys from SIV infection is comparable to the results seen in the RV144 trial with 16,000 adult volunteers in Thailand; RV144 was the first HIV vaccine study to demonstrate a modest protective effect, reducing the rate of HIV infection by 31 percent. The new research also provides an animal model to better understand the immune basis for vaccine protection against lentiviruses, a subclass of viruses that includes HIV and SIV. This knowledge will help guide strategies for the future development of AIDS vaccines.

The SIV vaccine regimen used in this study was similar to an HIV vaccine regimen currently being tested in humans in the NIAID-funded clinical trial known as HVTN 505. Both vaccine regimens consist of priming with a vaccine made from DNA that encodes immunodeficiency virus proteins, followed by boosting with an inactivated cold virus (adenovirus) that contains immunodeficiency virus proteins.

ARTICLE:
L Letvin et al. Immune and genetic correlates of vaccine protection against mucosal infection by SIV in monkeys. Science Translational Medicine DOI: 10.1126/scitranslmed.3002351 (2011).
WHO:
Gary J. Nabel, M.D., Ph.D., director of the NIAID Vaccine Research Center, and John R. Mascola, Ph.D., deputy director of the NIAID Vaccine Research Center, are available for interviews.
CONTACT:
To schedule interviews, please contact Laura Sivitz Leifman, (301) 402-1663, sivitzl@niaid.nih.gov.

NIAID conducts and supports research—at NIH, throughout the United States, and worldwide—to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID Web site at http://www.niaid.nih.gov/.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

Laura Sivitz Leifman | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>