Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibodies gone astray

29.10.2010
Stiff person syndrome: this is the name given to a rare disorder of the central nervous system whose causes still puzzle scientists. A research team from the Department of Neurology at the University of Würzburg (Germany) has now made a new discovery about this disease.

With stiff person syndrome, all the muscles of the body become stiff, in the form of attacks at first, then later constantly. Agoraphobia and extreme nervousness are also symptoms. If the disease is fully developed, the sufferer can neither walk nor stand and is then confined to a wheelchair.

Antibodies attack brain and spinal cord

The root of the syndrome is an immune disorder of the central nervous system: specific antibodies purposefully attack a protein in the brain and spinal cord. Normally, antibodies fend off harmful intruders, such as bacteria or viruses. However, they can also make the mistake of turning against the body itself, as happens with stiff person syndrome. Medical experts refer to this as an autoimmune disease.

With stiff person syndrome, the misguided antibodies attack the protein amphiphysin, which plays an important role in enabling the control points between nerve cells and also between nerves and muscles to work properly. According to the prevailing opinion in science, this protein is found inside the cells – and therefore should not actually be accessible to antibodies.

GABA deficiency leads to stiff person syndrome

However, the Würzburg researchers have provided clear evidence that the antibodies isolated from patients are able to reach their target molecule inside the cells and specifically bond with it. Via intermediate steps in the cell cycle they then cause a reduced release of the transmitter GABA, which inhibits the activity of the nerve cells. In the animal model, this leads to the typical symptoms of stiff person syndrome, such as muscle spasms, stiffness, and muscle cramps.

Publication in the journal Brain

Claudia Sommer, Christian Geis, and Klaus V. Toyka from the Department of Neurology present their new findings in the current issue of the renowned journal Brain. The publication came about in collaboration with Manfred Heckmann, head of the Würzburg Institute of Physiology. The German Research Foundation (DFG) funded the work in Collaborative Research Center 581 “Molecular Models for Diseases of the Nervous System”.

“We have proven using several techniques that the antibodies reach their goal,” says Claudia Sommer. The hidden paths the antibodies take to get there remain a mystery that the scientists are now looking to solve.

Prospects for therapy

If it proves possible to influence the activity of the antibodies with medication, for example, new possibilities in therapy might present themselves. This applies not only to stiff person syndrome, but also to other areas: “Antibodies also play a role in diseases that have other additional causes,” says Christian Geis. He cites, as an example, Neuromyelitis optica, a disease in which the antibody directs its destructive work against the spinal cord and optic nerves.

About stiff person syndrome

Stiff person syndrome is regarded as a rare disease. It affects an average of one person in every million. The Würzburg Department of Neurology has a total of ten patients in its care.

One way of relieving the symptoms of sufferers is with dialysis because this temporarily removes the harmful antibodies from the blood. The effect does not last though, since new antibodies continue to be produced by the B cells of the immune system. However, the B cells can also be attacked: with medication that inhibits their activity. “The method is relatively new and is working very well in a few patients,” comments Claudia Sommer.

Geis, C, Weishaupt, A., Hallermann, S., Grünewald, B., Wessig, C., Wultsch, T., Reif, A., Byts, N., Beck, M., Jablonka, S., Boettger, M., Üçeyler, N., Fouquet, W., Gerlach, M., Meinck, H-M., Sirén, A-L., Sigrist, S.J., Toyka, K.V., Heckmann, M., Sommer, C. (2010). Stiff person syndrome-associated autoantibodies to amphiphysin mediate reduced GABAergic inhibition. Brain 2010; doi: 10.1093/brain/awq253

Contact

Dr. Christian Geis, Department of Neurology at the University of Würzburg, phone +49 (0)931 201-24617, geis_c@klinik.uni-wuerzburg.de

Prof. Dr. Claudia Sommer, Department of Neurology at the University of Würzburg, phone +49 (0)931 201-23763, sommer@mail.uni-wuerzburg.de

Robert Emmerich | idw
Further information:
http://www.uni-wuerzburg.de

Further reports about: Antibodies B cells Brain Neurology nerve cell spinal cord

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>