Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Antibiotic resistance spreads rapidly between bacteria

12.04.2011
The part of bacterial DNA that often carries antibiotic resistance is a master at moving between different types of bacteria and adapting to widely differing bacterial species, shows a study made by a research team at the University of Gothenburg in cooperation with Chalmers University of Technology.

The results are published in an article in the scientific journal Nature Communications.


Antibiotic resistance-carrying plasmids from different bacteria can meet and exchange genetic material. The result is plasmids consisting of genes that have each been adapted to different bacterial species. This facilitates further adaptation and mobility, and consequently also the spread of antibiotic resistance between different bacterial species. Björn Norberg

More and more bacteria are becoming resistant to our common antibiotics, and to make matters worse, more and more are becoming resistant to all known antibiotics. The problem is known as multi-resistance, and is generally described as one of the most significant future threats to public health Antibiotic resistance can arise in bacteria in our environment and in our bodies. Antibiotic resistance can then be transferred to the bacteria that cause human diseases, even if the bacteria are not related to each other.

A large proportion of gene transfer between bacteria takes place with the aid of what are known as conjugative plasmids, a part of the bacterial DNA. A plasmid can only exist and multiply inside a cell, where it uses the cell’s machinery, but can then be transferred to another cell and in that way spread between bacteria.

The research team has studied a group of the known carriers of antibiotic resistance genes: IncP-1 plasmids. Using advanced DNA analysis, the researchers have succeeded in mapping the origin of different IncP-1 plasmids and their mobility between different bacterial species. “Our results show that plasmids from the IncP-1 group have existed in, and adapted to, widely differing bacteria. They have also recombined, which means that a single plasmid can be regarded as a composite jigsaw puzzle of genes, each of which has adapted to different bacterial species”, says Peter Norberg, a researcher in the Institute of Biomedicine at the University of Gothenburg. This indicates very good adaptability and suggests that these plasmids can move relatively freely between, and thrive in, widely differing bacterial species.

“IncP-1 plasmids are very potent ‘vehicles’ for transporting antibiotic resistance genes between bacterial species. Therefore, it does not matter much in what environment, in what part of the world, or in what bacterial species antibiotic resistance arises. Resistance genes could relatively easily be transported from the original environment to bacteria that infect humans, through IncP-1 plasmids, or other plasmids with similar properties, as ‘vehicles’,” says Professor Malte Hermansson of the Department of Cell and Molecular Biology at the University of Gothenburg.

It has been known for some time that plasmids are important in the spread of antibiotic resistance. The research team’s findings show that IncP-1 plasmids can move, and have moved, between widely differing bacterial species and in addition have interacted directly with one another, which can increase the potential for gene spreading.


The study The IncP-1 Plasmid Backbone Adapts to Different Host Bacterial Species and Evolves Through Homologous Recombination has been conducted by Peter Norberg, Maria Bergström and Malte Hermansson at the University of Gothenburg, in cooperation with Vinay Jethava and Devdatt Dubhashi at the Chalmers University of Technology.

The research has been funded by the Swedish Research Council, the University of Gothenburg, the National Board of Health and Welfare, the Swedish Society of Medicine Funds, the Magnus Bergvall Foundation and the Wilhelm and Martina Lundgren Science Fund 1.

Contact:

Malte Hermansson, Department of Cell and Molecular Biology at the University of Gothenburg
+46 (0)31- 786 2574
malte.hermansson@cmb.gu.se
Peter Norberg, Institute of Biomedicine at the University of Gothenburg
+46 (0)735- 31 61 66
peter.norberg@gu.se
Bibiographic data
Journal: Nature Communiations
Title: The IncP-1 plasmid backbone adapts to different host bacterial species and evolves through homologous recombination

Authors: Peter Norberg, Maria Bergström, Vinay Jethava, Devdatt Dubhashi, Malte Hermansson

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.nature.com/ncomms/journal/v2/n4/full/ncomms1267.html

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>