Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New antibiotic cures disease by disarming pathogens, not killing them

02.10.2012
A new type of antibiotic can effectively treat an antibiotic-resistant infection by disarming instead of killing the bacteria that cause it. Researchers report their findings in the October 2 issue of mBio®, the online open-access journal of the American Society for Microbiology.

"Traditionally, people have tried to find antibiotics that rapidly kill bacteria. But we found a new class of antibiotics which has no ability to kill Acinetobacter that can still protect, not by killing the bug, but by completely preventing it from turning on host inflammation," says Brad Spellberg of the UCLA Medical Center and David Geffen School of Medicine, a researcher on the study.

New drugs are badly needed for treating infections with the bacterium Acinetobacter baumannii, a pathogen that most often strikes hospital patients and immune- compromised individuals through open wounds, breathing tubes, or catheters. The bacterium can cause potentially lethal bloodstream infections. Strains of A. baumannii have acquired resistance to a wide range of antibiotics, and some are resistant to every FDA-approved antibiotic, making them untreatable.

Spelling and his colleagues found that in laboratory mice it was possible to mitigate the potentially lethal effects of the bacterium by blocking one of its toxic products rather than killing it.

"We found that strains that caused the rapidly lethal infections shed lipopolysaccharide [also called LPS or endotoxin] while growing. The more endotoxin shed, the more virulent the strain was," says Spellberg. This pinpointed a new therapy target for the researchers: the endotoxin these bacteria shed in the body.

Blocking the synthesis ofthe endotoxin with a small molecule called LpxC-1 prevented infected mice from getting sick. Unlike traditional antibiotics, Spellberg says, LpxC-1 doesn't kill the bacteria, it just shuts down the manufacture of the endotoxin and stops the body from mounting the inflammatory immune response to it that is the actual cause of death in seriously ill patients.

Spellberg says this is a direction few researchers have taken when exploring ways to treat infections but that it could make the difference in finding an effective drug. The results also highlight how important it is to find new, physiologically relevant ways of screening potential antibiotics for pathogens with a high degree of resistance, write the authors. Molecules like LpxC-1 that inhibit rather than kill bacteria wouldn't pass muster with traditional antibiotic screens that are based on killing effectiveness.

Liise-anne Pirofski of the Albert Einstein College of Medicine and a reviewer of the study for mBio® says neutralizing virulence factors is showing a lot of promise as an alternative route for treating infections. "There's a growing movement in infectious disease therapy to control the host inflammation response in treatment rather than just 'murdering' the organism," says Pirofski. "This is a very elegant and important validation that this approach can work – at least in mice."

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mBio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>