Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New antibiotic cures disease by disarming pathogens, not killing them

02.10.2012
A new type of antibiotic can effectively treat an antibiotic-resistant infection by disarming instead of killing the bacteria that cause it. Researchers report their findings in the October 2 issue of mBio®, the online open-access journal of the American Society for Microbiology.

"Traditionally, people have tried to find antibiotics that rapidly kill bacteria. But we found a new class of antibiotics which has no ability to kill Acinetobacter that can still protect, not by killing the bug, but by completely preventing it from turning on host inflammation," says Brad Spellberg of the UCLA Medical Center and David Geffen School of Medicine, a researcher on the study.

New drugs are badly needed for treating infections with the bacterium Acinetobacter baumannii, a pathogen that most often strikes hospital patients and immune- compromised individuals through open wounds, breathing tubes, or catheters. The bacterium can cause potentially lethal bloodstream infections. Strains of A. baumannii have acquired resistance to a wide range of antibiotics, and some are resistant to every FDA-approved antibiotic, making them untreatable.

Spelling and his colleagues found that in laboratory mice it was possible to mitigate the potentially lethal effects of the bacterium by blocking one of its toxic products rather than killing it.

"We found that strains that caused the rapidly lethal infections shed lipopolysaccharide [also called LPS or endotoxin] while growing. The more endotoxin shed, the more virulent the strain was," says Spellberg. This pinpointed a new therapy target for the researchers: the endotoxin these bacteria shed in the body.

Blocking the synthesis ofthe endotoxin with a small molecule called LpxC-1 prevented infected mice from getting sick. Unlike traditional antibiotics, Spellberg says, LpxC-1 doesn't kill the bacteria, it just shuts down the manufacture of the endotoxin and stops the body from mounting the inflammatory immune response to it that is the actual cause of death in seriously ill patients.

Spellberg says this is a direction few researchers have taken when exploring ways to treat infections but that it could make the difference in finding an effective drug. The results also highlight how important it is to find new, physiologically relevant ways of screening potential antibiotics for pathogens with a high degree of resistance, write the authors. Molecules like LpxC-1 that inhibit rather than kill bacteria wouldn't pass muster with traditional antibiotic screens that are based on killing effectiveness.

Liise-anne Pirofski of the Albert Einstein College of Medicine and a reviewer of the study for mBio® says neutralizing virulence factors is showing a lot of promise as an alternative route for treating infections. "There's a growing movement in infectious disease therapy to control the host inflammation response in treatment rather than just 'murdering' the organism," says Pirofski. "This is a very elegant and important validation that this approach can work – at least in mice."

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mBio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>